Estuaries and Coasts

, Volume 29, Issue 2, pp 257–268 | Cite as

Controls on herbaceous litter decomposition in the estuarine ecotones of the Florida Everglades

Article

Abstract

The effects of nutrient availability and litter quality on litter decomposition were measured in two oligotrophic phosphorus (P)-limited Florida Everglades esturies, United States. The two estuaries differ, in that one (Shark River estuary) is directly connected to the Gulf of Mexico and receives marine P, while the other (Taylor Slough estuary) does not receive marine P because Florida Bay separates it from the Gulf of Mexico. Decomposition of three macrophytes.Cladium jamaicense, Eleochaaris spp., andJuncus roemerianus, was studied using a litter bag technique over 18 mo. Litter was exposed to three treatments: soil surface+macroinvertebrates (=macro), soil surface without macroinvertebrates (=wet), and above the soil and water (=aerial). The third treatment replicated the decomposition of standing dead leaves. Decomposition rates showed that litter exposed to the wet and macro treatments decomposed significantly faster than the aerial treatment, where atmospheric deposition was the only source of nutrients. Macroinvertebrates had no influence on litter decompostion rates.C. jamaicense decomposed faster at sites, with higher P, andEleocharis spp. decomposed significantly faster at sites with higher nitrogen (N). Initial tissue C:N and C:P molar ratios revealed that the nutrient quality of litter of bothEleocharis spp. andJ. roemerianus was higher thanC. jamaicense, but onlyEleocharis spp. decomposed faster thanC. jamaicense. C. jamaicense litter tended to immobilize P, whileEleocharis spp. litter showed net remineralization of N and P. A comparison with other estuarine and wetland systems revealed the dependence of litter decomposition on nutrient availability and litter quality. The results from this experiment suggest that Everglades restoration may have an important effect on key ecosystem processes in the estuarine ecotone of this landscape.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aber, J. andJ. Melillo. 1982. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content.Canadian Journal of Botany 60:2263–2269.Google Scholar
  2. Amador, J. A., H. Richany, andR. D. Jones. 1992. Factors affecting phosphate uptake by peat soils of the Florida Everglades.Soil Science 153:463–470.CrossRefGoogle Scholar
  3. Bianchi, T. S. andS. Findlay. 1991. Decomposition of Hudson estuary macrophytes: Photosynthetic pigment transformations and decay constants.Estuaries 14:65–73.CrossRefGoogle Scholar
  4. Bradford, M. A., G. M. Tordoff, T. Eggers, T. H. Jones, andJ. E. Newington. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition.OIKOS 99:317–323.CrossRefGoogle Scholar
  5. Brezonik, P. L. andC. D. Pollman. 1999. Phosphorus chemistry and cycling in Florida lakes: Global issues and local perspectives. p. 69–110.In K. R. Reddy, G. A. O'Connor, and C. L. Schelske (eds.). Phosphorus Biogeochemistry in Subtropical Ecosystems. Lewis Publishers. Boca Raton, Florida.Google Scholar
  6. Brinson, M. M., A. E. Lugo, andS Brown. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands.Annual Review of Ecology and Systematics 12:123–161.CrossRefGoogle Scholar
  7. Childers, D. L., J. N. Boyer, S. E. Davis, C. J. Madden, D. T. Rudnick, andF. H. Sklar. 2006. Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside down” estuaries of the Florida Everglades.Limnology and Oceanography 51:602–616.Google Scholar
  8. Childers, D. L., R. F. Doren, R. Jones, G. B. Noe, M. Rugge, andL. J. Scinto. 2003. Decadal change in vegetation and soil phosphorus patterns across the Everglades landscape.Journal of Environmental Quality 32:344–362.CrossRefGoogle Scholar
  9. Christian, R. R., W. L. Bryant, Jr., andM. M. Brinson. 1990.Juncus roemerianus production and decomposition along gradients of salinity and hydroperiod.Marine Ecology Progress Series 68: 137–145.CrossRefGoogle Scholar
  10. Daoust, R. J. andD. L. Childers. 1999. Controls of emergent macrophyte composition, abundance, and productivity in freshwater Everglades wetland communities.Wetlands 19:262–275.Google Scholar
  11. Davis, S. M. 1991. Growth, decomposition and nutrient retention ofCladium jamaicense Crantz andTypha domingensis Pers. in the Florida Everglades.Aquatic Botany 40:203–224.CrossRefGoogle Scholar
  12. Davis, S. E., C. Coronado-Molina, D. L. Childers, andJ. W. Day. 2003. Temporally dependent C, N, and P dynamics associated with the decay ofRhizophora mangle leaf litter in an oligotrophic south Florida estuary.Aquatic Botany 75:199–215.CrossRefGoogle Scholar
  13. Davis, S. M. andJ. C. Ogden. 1994. Everglades: The Ecosystem and its restoration. St. Lucie Press, Delray Beach, Florida.Google Scholar
  14. Davis, C. B. andA. G. van der Valk. 1978. The decomposition of standing and fallen litter ofTypha glauca andScirpus fluviatilis.Canadian Journal of Botany 56:662–675.CrossRefGoogle Scholar
  15. DeAngelis, D. 1994. Synthesis: Spatial, and temporal characteristics of the environment, p. 307–320.In S. M. Davis and J. C. Ogden (eds.) Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, Florida.Google Scholar
  16. DeBusk, W. F. andK. R. Reddy. 1998. Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh.Soil Science Society of America Journal 62:1460–1468.CrossRefGoogle Scholar
  17. De la Cruz, A. A. andB. C. Gabriel. 1974. Caloric, elemental, and nutritive changes in decomposingJuncus roemerianus leaves.Ecology 55:882–886.CrossRefGoogle Scholar
  18. Fourqurean, J. W., J. C. Zieman, andG. V. N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrassThalassia testudinum.Limnology and Oceanography 37:162–171.Google Scholar
  19. Gaiser, E. E., L. J. Scinto, J. H. Richards, K. Jayachandran, D. L. Childers, J. C. Trexler, andR. D. Jones. 2004. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland.Water Research 38:507–516.CrossRefGoogle Scholar
  20. Gallacher, J. L. 1978. Decomposition process: Summary and recommendations, p. 145–151.In R. E. Good, D. F. Whigham, and R. L. Simpson (eds.) Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York.Google Scholar
  21. Jackson, D., S. P. Long, andC. F. Mason. 1986. Net primary production, decomposition and export ofSpartina anglica on a Suffolk salt-marsh.Journal of Ecology 74:647–662.CrossRefGoogle Scholar
  22. Kaushik, N. K. andH. B. N. Hynes. 1971. Experimental study on the role of autumn shed leaves in aquatic environments.Journal of Ecology 56:229–245.Google Scholar
  23. Koch, M. S. andK. R. Reddy. 1992. Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades.Soil Science Society of America Journal 56:1492–1499.CrossRefGoogle Scholar
  24. Lillebo, A. I., R. F. Mogens, M. A. Pardal, andJ. C. Marques. 1999. The effects of macrofauna and meiofauna on the degradation ofSpartina maritima detritus from a salt marsh area.Acta Oecologica 20:249–258.CrossRefGoogle Scholar
  25. McCormick, P. V., P. S. Rawlik, K. Lurding, E. P. Smith, andF. H. Sklar. 1996. Periphyton water quality relationships along a nutrient gradient in the northern Florida Everglades.Journal of the North American Benthological Society 48:433–449.CrossRefGoogle Scholar
  26. Mitsch, W. J. andJ. G. Gosselink. 2000. Inland wetland ecosystems: Freshwater marshes, p. 337–419.In W. J. Mitsch and J. G. Gosselink (eds.), Wetlands, 3rd edition. John Wiley and Sons, New York.Google Scholar
  27. Nelson, J. W., J. A. Kadlec, andH. R. Murkin. 1990. Response by macroinvertebrates to cattail litter quality and timing of litter submergence in a northern prairie marsh.Wetlands 10:47–60.Google Scholar
  28. Newman, S., H. Kumpf, J. A. Laing, andW. C. Kennedy. 2001. Decomposition responses to phosphorus enrichment in an Everglades (Unites States of America) slough.Biogeochemistry 54:229–250.CrossRefGoogle Scholar
  29. Noe, G. B., D. L. Childers, andR. D. Jones. 2001. Phosphorus biogeochemistry and the impact of P enrichment: Why is the Everglades so unique?Ecosystems 4:603–624.CrossRefGoogle Scholar
  30. Qualls, R. G. andC. J. Richardson. 2000. Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms.Soil Science Society of America Journal 64:799–808.CrossRefGoogle Scholar
  31. Qualls, R. G. andC. J. Richardson. 2002. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida.Biogeochemistry 62:197–229.CrossRefGoogle Scholar
  32. Rader, R. B. andC. J. Richardson. 1992. The effects of nutrient enrichment on algae and macroinvertebrates in the Everglades.Wetlands 12:121–135.CrossRefGoogle Scholar
  33. Rejmánková, E. 2001. Effects of experimental phosphorus enrichment on oligotrophic tropical marshes in Belize, Central America.Plant and Soil 236:33–53.CrossRefGoogle Scholar
  34. Richardson, C. J., G. M. Ferrell, andP. Vaithiyanathan. 1999. Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass.Ecology 80:2182–2192.Google Scholar
  35. Rubio, G. 2003. Macrophyte decomposition and litter dynamics in the Everglades ecotones. M.S. Thesis, Florida International University, Miami, Florida.Google Scholar
  36. Rybcyk, J. M., G. Garson, andJ. W. Day, Jr. 1996. Nutrient enrichment and decomposition in wetland ecosystems: Models, analyses and effects.Current Topics in Wetland Biogeochemistry 2: 52–72.Google Scholar
  37. SASInstitute. 2000. SAS/STAT User's Guide, Version 8. SAS Institute, Inc., Cary, North Carolina.Google Scholar
  38. Sharp, L. andJ. H. Solorzano. 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters.Limnology and Oceanography 25:754–758.Google Scholar
  39. Sutula, M., J. Day, J. Cable, andD. Rudnick. 2001. Hydrological and nutrient budgets of freshwater and estuarine wetlands of Taylor Slough in southern Everglades, Florida (United States of America).Biogeochemistry 56:287–310.CrossRefGoogle Scholar
  40. Twilley, R. R., G. Ejdung, P. Romare, andW. M. Kemp. 1986. A comparative study of decomposition, oxygen consumption, and nutrient release for selected aquatic plants occurring in an estuarine environment.OIKOS 47:190–198.CrossRefGoogle Scholar
  41. van Dam, D., G. W. Heil, andB. Heijne. 1987. Throughfall chemistry of grassland vegetation: A new method with ion-exchange resins.Functional Ecology 1:423–427.CrossRefGoogle Scholar
  42. Villar, C. A., L. de Cabo, P. Vaithiyanathan, andC. Bonetto. 2001. Litter decomposition of emergent macrophytes in a floodplain marsh of the lower Paraná River.Aquatic Botany 70:105–116.CrossRefGoogle Scholar
  43. Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Rilling, andR. A. Fertik. 2001. Rates, patterns, and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24:90–107.CrossRefGoogle Scholar
  44. Webster, J. R. andE. F. Benfield. 1986. Vascular plant breakdown in freshwater ecosystems.Annual Review of Ecology and Systematics 17:567–594.CrossRefGoogle Scholar
  45. White, P. S. 1994. Synthesis: Vegetation pattern and process in the Everglades ecosystem, p. 445–460.In S. M. Davis and J. C. Ogden (eds.), Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, Florida.Google Scholar
  46. Zar, J. H. 1998. Comparing simple linear regression equations, p. 360–376.In J. H. Zar. (ed.), Biostatistical Analysis, 4th edition. Prentice Hall, New Jersey.Google Scholar

Copyright information

© Estuarine Research Federation 2006

Authors and Affiliations

  1. 1.Department of Biological Sciences & Southeast Environmental Research CenterFlorida International UniversityMiami

Personalised recommendations