Israel Journal of Mathematics

, Volume 60, Issue 3, pp 257–280

Local analytic invariants and splitting theorems in differential analysis

  • Edward Bierstone
  • Pierre D. Milman
Article

Abstract

We show that several classical problems concerning the splitting of exact sequences of spaces of differentiable functions can be reduced to questions of semicontinuity of discrete local invariants in analytic geometry. We thus provide a uniform approach to the continuous linear solution of the division, composition and extension problems in differential analysis, recovering the classical theorems and giving many new results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bierstone,Extension of Whitney fields from subanalytic sets, Invent. Math.46 (1978), 277–300.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    E. Bierstone and P. D. Milman, Extension and lifting of {ie279-1} Whitney fields, Enseignement Math.23 (1977), 129–137.MATHMathSciNetGoogle Scholar
  3. 3.
    E. Bierstone and P. D. Milman,Composite differentiable functions, Ann. of Math.116 (1982), 541–558.CrossRefMathSciNetGoogle Scholar
  4. 4.
    E. Bierstone and P. D. Milman,Relations among analytic functions, I, II, Ann. Inst. Fourier (Grenoble)37 (1987), 187–239, 49–77.MATHMathSciNetGoogle Scholar
  5. 5.
    E. Bierstone and G. W. Schwarz, Continuous linear division and extension of {ie279-2} functions, Duke Math. J.50 (1983), 233–271.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Briancon,Weierstrass préparé à la Hironaka, Astérisque 7,8 (1973), 67–73.MathSciNetGoogle Scholar
  7. 7.
    A. M. Gabrielov,Formal relations between analytic functions, Math. USSR Izvestija7 (1973), 1056–1088=Izv. Akad. Nauk SSSR Ser. Mat.37 (1973), 1056–1090.CrossRefGoogle Scholar
  8. 8.
    G. Glaeser,Fonctions composées différentiables, Ann. of Math.77 (1963), 193–209.CrossRefMathSciNetGoogle Scholar
  9. 9.
    H. Hironaka,Introduction to Real-Analytic Sets and Real-Analytic Maps, Istituto Matematico “L. Tonelli”, Pisa, 1973.Google Scholar
  10. 10.
    D. Luna,Fonctions différentiables invariantes sous l’opération d’un groupe réductif, Ann. Inst. Fourier (Grenoble)26 (1976), 33–49.MATHMathSciNetGoogle Scholar
  11. 11.
    B. Malgrange,Ideals of Differentiable Functions, Oxford University Press, Bombay, 1966.MATHGoogle Scholar
  12. 12.
    J. N. Mather, Stability of {ie279-3} mappings: I. The division theorem, Ann. of Math.87 (1968), 89–104.CrossRefMathSciNetGoogle Scholar
  13. 13.
    J. N. Mather, Stability of {ie279-4} mappings: II. Infinitesimal stability implies stability, Ann. of Math.89 (1969), 254–291.CrossRefMathSciNetGoogle Scholar
  14. 14.
    J. N. Mather,Differentiable invariants, Topology16 (1977), 145–155.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    P. D. Milman,The Malgrange-Mather division theorem, Topology16 (1977), 395–401.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    P. D. Milman,On the nonexistence of a projection from functions of x to functions of x n, Proc. Amer. Math. Soc.63 (1977), 87–90.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    B. Mitiagin,Approximate dimension and bases in nuclear spaces, Russian Math. Surveys16:4 (1961), 59–128=Uspehi Mat. Nauk16:4 (1961), 63–132.CrossRefGoogle Scholar
  18. 18.
    G. W. Schwarz,Smooth functions invariant under the action of a compact Lie group, Topology14 (1975), 63–68.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    R. T. Seeley, Extension of {ie279-5} functions defined in a half space, Proc. Amer. Math. Soc.15 (1964), 625–626.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.MATHGoogle Scholar
  21. 21.
    M. Tidten, Fortsetzungen von {ie279-6}-Funktionen, welche auf einer abgeschlossenen Menge inR n definiert sind, Manuscripta Math.27 (1979), 291–312.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    J. Cl. Tougeron,Idéaux de Fonctions Différentiables, Springer, Berlin-Heidelberg-New York, 1972.MATHGoogle Scholar
  23. 23.
    J. Cl. Tougeron,Fonctions composées diférentiables: cas algébrique, Ann. Inst. Fourier (Grenoble)30 (1980), 51–74.MATHMathSciNetGoogle Scholar
  24. 24.
    D. Vogt,Charakterisierung der Unterräume vons s, Math. Z.155 (1977), 109–117.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    D. Vogt,Subspaces and quotient spaces of (s), inFunctional Analysis: Surveys and Recent Results (Proc. Conf. Paderborn, 1976), North-Holland Math. Studies Vol. 27, North-Holland, Amsterdam, 1977, pp. 167–187.Google Scholar
  26. 26.
    D. Vogt and M. J. Wagner,Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math.67 (1980), 225–240.MATHMathSciNetGoogle Scholar
  27. 27.
    H. Whitney,Differentiable even functions, Duke Math. J.10 (1943), 159–160.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1987

Authors and Affiliations

  • Edward Bierstone
    • 1
  • Pierre D. Milman
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations