Israel Journal of Mathematics

, Volume 113, Issue 1, pp 61–93

Algebraic modular forms

  • Benedict H. Gross


In this paper, we develop an algebraic theory of modular forms, for connected, reductive groupsG overQ with the property that every arithmetic subgroup Γ ofG(Q) is finite. This theory includes our previous work [15] on semi-simple groupsG withG(R) compact, as well as the theory of algebraic Hecke characters for Serre tori [20]. The theory of algebraic modular forms leads to a workable theory of modular forms (modp), which we hope can be used to parameterize odd modular Galois representations.

The theory developed here was inspired by a letter of Serre to Tate in 1987, which has appeared recently [21]. I want to thank Serre for sending me a copy of this letter, and for many helpful discussions on the topic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Arthur,Lectures on automorphic L-functions, inL-Functions and Arithmetic, London Mathematical Society Lecture Notes, Vol. 153, 1991, pp. 1–21.MathSciNetGoogle Scholar
  2. [2]
    N. Bourbaki,Groupes et algèbras de Lie, Hermann, Paris, 1982.Google Scholar
  3. [3]
    A. Borel,Reduction theory for arithmetic groups, inAlgebraic Groups and Discontinuous Subgroups, Proceedings of Symposia in Pure Mathematics9 (1966), 20–25.MathSciNetGoogle Scholar
  4. [4]
    A. Borel,Automorphic L-functions, inAutomorphic Forms, Representations, and L-Functions, Proceedings of Symposia in Pure Mathematics33 (1979), 27–61.Google Scholar
  5. [5]
    A. Borel and Harish-Chandra,Arithmetic subgroups of algebraic groups, Annals of Mathematics75 (1962), 485–535.CrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Borel and J. Tits,Groupes réductifs, Publications Mathématiques de l’Institut des Hautes Études Scientifiques27 (1965), 55–150.CrossRefMathSciNetGoogle Scholar
  7. [7]
    S. Bosch, W. Lütkebohmert and M. Raynaud,Néron models, Ergebnisse der Mathematik21, Springer-Verlag, Berlin, 1990.MATHGoogle Scholar
  8. [8]
    P. Cartier,Representations of p-adic groups, inAutomorphic Forms, Representations, and L-Functions, Proceedings of Symposia in Pure Mathematics33 (1979), 111–155.MathSciNetGoogle Scholar
  9. [9]
    J. de Siebenthal,Sur certains sous-groupes de rang un des groupes de Lie clos, Comptes Rendus de l’Académie des Sciences, Paris230 (1950), 910–912.MATHGoogle Scholar
  10. [10]
    B. Gross,Heights and L-series, Number Theory CMS Conference Series7 (1985), 115–188.Google Scholar
  11. [11]
    B. Gross,Groups over Z, Inventiones Mathematicae124 (1996), 263–279.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    B. Gross,On the motive of a reductive group, Inventiones Mathematicae130 (1997), 287–313.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    B. Gross,On the motive of G and the principal homomorphism SL 2Ĝ, Asian Journal of Mathematics1 (1997), 208–213.MATHMathSciNetGoogle Scholar
  14. [14]
    B. Gross,On the Satake isomorphism, inGalois Representations in Arithmetic Algebraic Geometry, London Mathematical Society Lecture Notes, Vol. 254, 1998, pp. 223-237.Google Scholar
  15. [15]
    B. Gross and G. Savin,Motives with Galois group of type G 2:an exceptional theta correspondence, Compositio Mathematica114 (1998), 153–217.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    R. Kottwitz,Stable trace formula: cuspidal tempered terms, Duke Mathematical Journal51 (1984), 611–650.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    B. Mazur,Modular curves and the Eisenstein ideal, Publications Mathématiques de l’Institut des Hautes Études Scientifiques47 (1977), 33–186.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    D. Mumford,Abelian varieties, Publications of the Tata Institute5, 1974.Google Scholar
  19. [19]
    V. Platonov and A. Rapinchuk,Algebraic Groups and Number Theory, Academic Press, New York, 1944.Google Scholar
  20. [20]
    J.-P. Serre,Abelian ℓ-adic representations and elliptic curves, Benjamin, New York, 1968.Google Scholar
  21. [21]
    J.-P. Serre,Lettre de J-P. Serre à J. Tate, 7 août 1987, Israel Journal of Mathematics95 (1996), 282–291.CrossRefMathSciNetGoogle Scholar
  22. [22]
    J.-P. Serre,Propriétés conjecturates des groupes de Galois motiviques et des représentations ℓ-adiques, inMotives, Proceedings of Symposia in Pure Mathematics55 (1991), 377–400.MathSciNetGoogle Scholar
  23. [23]
    C. Siegel,Berechnung von Zetafunktionen als ganzzählige Stellen, Nachricthen der Akademie der Wissenschaften in Göttingen. II. Mathematisch-Physikalische Klasse10 (1969), 87–102.Google Scholar
  24. [24]
    G. Shimura,Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971.Google Scholar
  25. [25]
    R. Steinberg,Representations of algebraic groups, Nagoya Mathematical Journal22 (1963), 33–56.MATHMathSciNetGoogle Scholar
  26. [26]
    J. Tate,A review of non-Archimedean elliptic functions, inElliptic Curves, Modular Forms, and Fermat’s Last Theorem, International Press Series in Number Theory1 (1995), 162–184.MathSciNetGoogle Scholar
  27. [27]
    J. Tits,Reductive groups over local fields, inAutomorphic Forms, Representations, and L-Functions, Proceedings of Symposia in Pure Mathematics33 (1979), 29–69.MathSciNetGoogle Scholar
  28. [28]
    J. Tits,Représentations linéares irréductibles d’un groupe reductif sur un corps quelconque, Journal für die reine und angewandte Mathematik247 (1971), 196–220.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© The Magnes Press 1999

Authors and Affiliations

  • Benedict H. Gross
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations