Abstract
Rodríguez-Aviet al. (2002) give a general description of a discrete distribution generated by the Gaussian hypergeometric function with complex parameters and provide a detailed study of a biparametric distribution, namedCBPD, under conditions where the complex parameters have no real part. In this paper we present a more complete study of the discrete distribution obtained in the general case. Thus, its main probabilistic properties are described, convergence results are generalized and, finally, methods of estimation are developed with some examples of applications.
This is a preview of subscription content, log in to check access.
References
- 1.
Bowman, K.O., Shenton, L.R. and Kastenbaum, M. A. (1991). Discrete Pearson distributions. Oak Ridge National Laboratory. Technical Report TM-11899 Oak Ridge, Tennessee.
- 2.
Chang, D.K. (1989). On infinitely divisible discrete distributions. Utilitas Mathematica, 36, 215–217
- 3.
Dacey, M.F. (1972). A family of discrete probability distributions defined by the generalized hypergeometric series. Sankhya, Series B, 34, 243–250.
- 4.
Danial, E.J. (1988). Generalization to the sufficient conditions for a discrete random variable to be infinitely divisible. Statistics & Probability Letters, 6, 379–382
- 5.
Gutiérrez-Jáimez, R. and Rodríguez-Avi, J. (1997). Family of Pearson discrete distributions generated by the univariate hypergeometric function3 F 2(α1, α2, α3; γ1, γ2; λ. Applied Stochastics Models and Data Analysis, 13, 115–125.
- 6.
Irwing, J.O. (1975). The generalized Waring distribution, part III, J. R. Statist. Soc. A, 138, 374–385
- 7.
Johnson, N.L., Kotz, S. and Kemp A.W. (1992). Univariate discrete distributions, Wiley, New York. Second edition.
- 8.
Katti, S.K. (1967). Infinite divisibility of integer-valued random variables. Annals of Mathematical Statistics 38, 1306–1308
- 9.
Katti, S.K. and Gurland, J. (1961). The Poisson Pascal distribution. Biometrics, 17, 527–538
- 10.
Katti, S.K. and Gurland, J (1962). Some methods of estimation for the Poisson Binomial distribution. Biometrics, 18, 42–51
- 11.
McGuire; Judson, U., Brindley, T.A. and Bancroft, T.A. (1956). The distribution of European corn-borer larvaePyrausta Naubilalis (HBN) in field corn. Biometrics, 13, 65–78
- 12.
Ord, J.K. (1972). Pamilies of frequency distributions. Griffin, London.
- 13.
Rodríguez-Avi, J., Conde-Sánchez, A. and Sáez-Castillo, A.J. (2001). Distribuciones generadas por la función hipergeométrica p+1 F p . Investigación Operacional, 22 (2), 114–124.
- 14.
Rodríguez-Avi, J., Conde-Sánchez, A. and Sáez-Castillo, A.J. (2003). A new class of discrete distributions with complex parameters. Statistical Papers 44 (1) 67–88.
- 15.
Slater, J. L. (1966). Generalized hypergeometric functions. Cambridge University Press.
- 16.
Xekalaki, E. (1983). Infinite divisibility, completeness and regression properties of the univariate generalized Waring distribution. Annals of the Institute of Statistical Mathematics, Part A 35, 161–171
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rodríguez-Avi, J., Conde-Sánchez, A., Sáez-Castillo, A.J. et al. A triparametric discrete distribution with complex parameters. Statistical Papers 45, 81–95 (2004). https://doi.org/10.1007/BF02778271
Received:
Revised:
Issue Date:
Key words
- Pearson’s family
- hypergeometric function
- discrete distributions
- estimation
- infinite divisibility