## Abstract

We prove that two basic questions on outer measure are undecidable. First we show that consistently every sup-measurable function*f*: ℝ^{2} → ℝ is measurable. The interest in sup-measurable functions comes from differential equations and the question for which functions*f*: ℝ^{2} → ℝ the Cauchy problem*y′=f(x,y), y*(x_{0})=y_{0} has a unique almost-everywhere solution in the class*AC*_{t}(ℝ) of locally absolutely continuous functions on ℝ. Next we prove that consistently every function*f*: ℝ → ℝ is continuous on some set of positive outer Lebesgue measure. This says that in a strong sense the family of continuous functions (from the reals to the reals) is dense in the space of arbitrary such functions.

For the proofs we discover and investigate a new family of nicely definable forcing notions (so indirectly we deal with nice ideals of subsets of the reals—the two classical ones being the ideal of null sets and the ideal of meagre ones).

Concerning the method, i.e., the development of a family of forcing notions, the point is that whereas there are many such objects close to the Cohen forcing (corresponding to the ideal of meagre sets), little has been known on the existence of relatives of the random real forcing (corresponding to the ideal of null sets), and we look exactly at such forcing notions.

## Keywords

Borel Function Outer Measure Force Notion Positive Lebesgue Measure Finite Tree## Preview

Unable to display preview. Download preview PDF.

## References

- [1]U. Abraham, M. Rubin and S. Shelah,
*On the consistency of some partition theorems for continuous colorings, and the structure of ℵ*_{1}*-dense real order types*, Annals of Pure and Applied Logic**29**(1985), 123–206.MathSciNetCrossRefGoogle Scholar - [2]M. Balcerzak,
*Some remarks on sup-measurability*, Real Analysis Exchange**17**(1991/92), 597–607.MathSciNetzbMATHGoogle Scholar - [3]M. Balcerzak and K. Ciesielski,
*On the sup-measurable functions problem*, Real Analysis Exchange**23**(1997/98), 787–797.MathSciNetzbMATHGoogle Scholar - [4]T. Bartoszyński and H. Judah,
*Set Theory: On the Structure of the Real Line*, A K Peters, Wellesley, Mass., 1995.zbMATHGoogle Scholar - [5]J. E. Baumgartner,
*Iterated forcing*, in*Surveys in Set Theory*(A. Mathias, ed.), Volume 87 of London Mathematical Society Lecture Notes, Cambridge University Press, 1978, pp. 1–59.Google Scholar - [6]H. Blumberg,
*New properties of all real functions*, Transactions of the American Mathematical Society**24**(1922), 113–128.MathSciNetCrossRefGoogle Scholar - [7]K. Ciesielski,
*Set theoretic real analysis*, Journal of Applied Analysis**3**(1997), 143–190.MathSciNetCrossRefGoogle Scholar - [8]K. Ciesielski and S. Shelah,
*Category analogue of sup-measurability problem*, Journal of Applied Analysis**6**(2000), 159–172. math.LO/9905147.MathSciNetCrossRefGoogle Scholar - [9]D. G. Fremlin,
*Problem list*, Circulated notes. See http://www.essex.ac.uk/maths/staff/fremlin/problems.htm.Google Scholar - [10]D. H. Fremlin, E-mail message to A. Roslanowski, October 16, 2000. Message-Id: <E131E5a-0007QQ-00@serultra0.essex.ac.uk>.Google Scholar
- [11]D. H. Fremlin,
*Measure Theory*, Torres Fremlin, Colchester, England, 2004. See <|http://www.essex.ac.uk/maths/staff/fremlin/mstsales.html|URL|>zbMATHGoogle Scholar - [12]M. Goldstern,
*Tools for your forcing construction*, in*Set Theory of the Reals*, Israel Mathematical Conference Proceedings**6**, (1993), 305–360.Google Scholar - [13]E. Grande and Z. Grande,
*Quelques remarques sur la superposition F(x, f (x))*, Fundamenta Mathematicae**121**(1984), 199–211.MathSciNetCrossRefGoogle Scholar - [14]Z. Grande and J. S. Lipiński,
*Un exemple d'une fonction sup-mesurable qui n'est pas mesurable*. Colloquium Mathematicum**39**(1978), 77–79.MathSciNetCrossRefGoogle Scholar - [15]E. Grzegorek,
*On some results of Darst and Sierpiński concerning universal null and universally measurable sets*, Bulletin de l'Académie Polonaise des Séries Sciences Mathématiques**29**(1981), 1–5.MathSciNetzbMATHGoogle Scholar - [16]A. S. Kechris,
*Classical Descriptive Set Theory*, Volume 156 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1994.Google Scholar - [17]J. Kellner,
*Preserving non-null with Suslin*^{+}*forcing*, Archive for Mathematical Logic, to appear. math.LO/0211385.Google Scholar - [18]J. Kellner,
*Definable forcings*PhD thesis, Universität Wien, Austria, 2004.Google Scholar - [19]J. Kellner and S. Shelah,
*Preserving preservation*, Journal of Symbolic Logic, to appear. math.LO/0405081.Google Scholar - [20]A. B. Kharazishvili,
*Sup-measurable and weakly sup-measurable mappings in the theory of ordinary differential equations*, Journal of Applied Analysis**3**(1997), 211–223.MathSciNetzbMATHGoogle Scholar - [21]A. Roslanowski and S. Shelah,
*Norms on possibilities I: forcing with trees and creature*. Memoirs of the American Mathematical Society**141**(671) (1999), xii+167pp. math.LO/9807172.Google Scholar - [22]A. Rosłanowski and S. Shelah,
*Norms on possibilities II: More ccc ideals on 2*^{w}, Journal of Applied Analysis**3**(1997), 103–127. math.LO/9703222.MathSciNetCrossRefGoogle Scholar - [23]A. Rosłanowski and S. Shelah,
*Sweet & Sour and other flavours of ccc forcing notions*, Archive for Mathematical Logic**43**(2004), 583–663. math. LO/9909115.MathSciNetCrossRefGoogle Scholar - [24]S. Shelah,
*Possibly every real function is continuous on a non-meagre set*, Publications de L'Institute Mathématique, Beograd, Nouvelle Série,**57**(71) (1995), 47–60. math.LO/9511220.MathSciNetzbMATHGoogle Scholar - [25]S. Shelah,
*Properness without elementaricity*, Journal of Applied Analysis**10**(2004), 169–289. math.LO/9712283.MathSciNetCrossRefGoogle Scholar - [26]S. Shelah,
*Proper and Improper Forcing*, Perspectives in Mathematical Logic, Springer, Berlin, 1998.CrossRefGoogle Scholar - [27]H. von Weizsäcker,
*Remark on extremal measure extensions*, in*Measure Theory, Oberwolfach 1979*, Lecture Notes in Mathematics**794**, Springer, Berlin, 1980, pp. 79–80.CrossRefGoogle Scholar