Statistical Papers

, Volume 45, Issue 2, pp 139–173 | Cite as

Frequentist and Bayesian approaches for interval-censored data

  • Guadalupe Gómez
  • M. Luz Calle
  • Ramon Oller
Survey Article

Abstract

Interval censoring appears when the event of interest is only known to have occurred within a random time interval. Estimation and hypothesis testing procedures for interval-censored data are surveyed. We distinguish between frequentist and Bayesian approaches. Computational aspects for every proposed method are described and solutions with S-Plus, whenever are feasible, are mentioned. Three real data sets are analyzed.

Key Words

AIDS Bayesian inference Hypothesis testing Interval censoring Nonparametric methods Permutational tests 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Best, N.G., Cowles, M.K. and Vines, S.K. (1995)CODA Manual version 0.30, MRC Biostatistics unit, Cambridge, UK.Google Scholar
  2. Böhning, D., Schlattmann, P. and Dietz, E. (1996) Interval-censored data: A note on the nonparametric maximum likelihood estimator of the distribution function.Biometrika 83, 462–466.MATHCrossRefGoogle Scholar
  3. Brookmeyer, R. and Goedert, J.J. (1989) Censoring in an epidemic with an application to hemophilia-associated AIDS.Biometrics 45, 325–335.MATHCrossRefGoogle Scholar
  4. Calle, M.L. and Gómez, G. (2001) Nonparametric Bayesian estimation from interval-censored data using Monte Carlo methods.Journal of Statistical Planning and Inference 98, 73–87.MATHCrossRefMathSciNetGoogle Scholar
  5. Chang, M. N. and Yang, G. L. (1987) Strong consistency of a nonparametric estimator of the survival function with doubly censored data.Annals of Statistics 16, 1536–1547.CrossRefMathSciNetGoogle Scholar
  6. Courgeau, D. and Najim, J. (1996) Interval-censored event history analysis.Population: An English Selection,8, 191–298.Google Scholar
  7. De Gruttola, V. and Lagakos, S.W. (1989) Analysis of doubly censored survival data, with application to AIDS.Biometrics 45, 1–11.MATHCrossRefMathSciNetGoogle Scholar
  8. Doksum, K. (1974) Tailfree and neutral random probabilities and their posterior distributions.Ann. Probab. 2, 183–201.MATHCrossRefMathSciNetGoogle Scholar
  9. Doss, H. (1994) Bayesian nonparametric estimation for incomplete data via successive substitution sampling.Ann. Statist. 22, 1763–1786.MATHCrossRefMathSciNetGoogle Scholar
  10. Doss, H. and Narasimhan (1998) Dynamic diplay of changing posterior in Bayesian survival analysis, inPractical Nonparametric and Semiparametric Bayesian Statistics (eds. Dey, D. Müller, P. and Sinha, D.), New York: Springer-Verlag, 63–87.Google Scholar
  11. Fay, M.P. (1996) Rank invariant tests for interval-censored data under the grouped continuous model.Biometrics 52, 811–822.MATHCrossRefMathSciNetGoogle Scholar
  12. Fay, M.P. (1999) Comparing several score tests for interval-censored data.Statistics in Medicine 18, 273–285.CrossRefMathSciNetGoogle Scholar
  13. Fay, M.P. and Shih, J.H. (1998) Permutation tests using estimated distribution functions.Journal of the American Statistical Association 93, 387–396.MATHCrossRefMathSciNetGoogle Scholar
  14. Ferguson, T.S. (1973) A Bayesian analysis of some nonparametric problems.Annals of Statistics 1, 209–230.MATHCrossRefMathSciNetGoogle Scholar
  15. Finkelstein, D.M. (1986) A proportional hazards models for interval-censored failure time data.Biometrics 42, 845–854.MATHCrossRefMathSciNetGoogle Scholar
  16. Fleming, T.R. and Harrington, D.P. (1991)Counting processes and survival analysis. New York: John Wiley and Sons.MATHGoogle Scholar
  17. Gehan, E.A. (1965) A generalized Wilcoxon test for comparing arbitrarily singly censored samples.Biometrika 52 203–223.MATHMathSciNetGoogle Scholar
  18. Gelfand, A.E. and Smith, F.M. (1990) Sampling-based approaches to calculating marginal densities.Journal of the American Statistical Association 85, 398–409.MATHCrossRefMathSciNetGoogle Scholar
  19. Gentleman, R. and Geyer, C.J. (1994). Maximum-likelihood for interval-censored data: Consistency and computation.Biometrika 81, 618–623.MATHCrossRefMathSciNetGoogle Scholar
  20. Goetghebeur, E. and Ryan, L. (2000) Semiparametric regression analysis of interval-censored data.Biometrics 56, 1139–1144.MATHCrossRefMathSciNetGoogle Scholar
  21. Goggins, W. B. and Finkelstein, D.M. (2000) A proportional hazards models for multivariate interval-censored failure time data.Biometrics 56, 940–943.MATHCrossRefGoogle Scholar
  22. Gómez, G. and Calle, M.L. (1999). Nonparametric estimation with doubly censored data.Journal of Applied Statistics 26 (1), 45–58.MATHCrossRefMathSciNetGoogle Scholar
  23. Gómez, G., Calle, M.L., Muga, R. and Egea, J. M. (2000) Estimation of the risk of HIV Infection as a function of the length of intravenous drug use. A nonparametric Bayesian approach.Statistics in Medicine.19, 2641–2656CrossRefGoogle Scholar
  24. Gómez, G. and Julià, O. (1990) Estimation and asymptotic properties of the distribution of time-to-tumour in carcinogenesis experiments.IMA Journal of Mathematics Applied in Medicine and Biology 7, 109–123.MATHCrossRefGoogle Scholar
  25. Gómez, G., Julià, O. and Utzet, F. (1992) Survival Analysis for Left Censored Data.Survival Analysis: State of the Art. Editors: J.P. Klein and P.K. Goel. Kluwer Academic Publishers. ISBN 0-7923-1634-7.Google Scholar
  26. Gómez, G., Julià, O. and Utzet, F. (1994) Asymptotic properties of the left Kaplan-Meier estimator.Communications in Statistics: Theory and Methods 23, 123–135.MATHCrossRefMathSciNetGoogle Scholar
  27. Gómez, G. and Lagakos, S. (1994) Estimation of the infection time and latency distribution of AIDS with doubly censored data.Biometrics 50, 204–212.MATHCrossRefGoogle Scholar
  28. Gómez, G. and van Ryzin, J. (1992) Estimation of the subsurvival function for time-to-tumor in survival/sacrifice experiments.Statistics and Probability Letters 13, 5–13.MATHCrossRefMathSciNetGoogle Scholar
  29. Groeneboom, P. and Wellner, J.A. (1992),Information bounds and nonparametric maximum likelihood estimation Basel: Birkhäuser Verlag.MATHGoogle Scholar
  30. Ibrahim, J.G., Chen, M.H. and Sinha, D. (2001)Bayesian Survival analysis. New York: Springer-Verlag.MATHGoogle Scholar
  31. Johnson, W. and Christensen, R. (1986) Bayesian nonparametric survival analysis for grouped data.The Canadian Journal of Statistics 14, 307–314.MATHCrossRefMathSciNetGoogle Scholar
  32. Kooperberg, C. and Clarkson, D.B. (1997) Hazard regression with intervalcensored data.Biometrics 53, 1485–1494.MATHCrossRefGoogle Scholar
  33. Lindsey, J.C. (1998) A study of interval censoring in parametric regression models.Lifetime Data Analysis 4, 329–354.MATHCrossRefGoogle Scholar
  34. Lindsey, J.C. and Ryan, L.M. (1998) Tutorial in Biostatistics. Methods for interval-censored data.Statistics in Medicine 17, 219–238CrossRefGoogle Scholar
  35. Mantel, N. (1967) Ranking procedures for arbitrarily restricted observation.Biometrics 23, 65–78.CrossRefGoogle Scholar
  36. Muñoz, A. and Xu, F. (1996) Models for the incubation of AIDS and variations according to age and period.Statistics in Medicine 15, 2459–2473.CrossRefGoogle Scholar
  37. Ng, M.P. (2002) A modification of Peto's nonparametric estimation of survival curves for interval-censored data.Biometrics 58, 439–442.CrossRefMathSciNetGoogle Scholar
  38. Pan, W. and Chappell, R. (2002) Estimation in the Cox proportional hazards models with left-truncated and interval-censored data.Biometrics 58, 64–70.CrossRefMathSciNetGoogle Scholar
  39. Pepe, M.S. and Fleming, T.R. (1989) Weighted Kaplan-Meier statistics: a class of distance tests for censored survival data.Biometrics 45, 497–507.MATHCrossRefMathSciNetGoogle Scholar
  40. Peto, R. and Peto, J. (1972) Asymptotically efficient rank invariant test procedures.Journal of the Royal Statistical Society, Series A, General 135, 185–207.CrossRefGoogle Scholar
  41. Peto, R. (1973) Experimental survival curves for interval-censored Data.Journal of the Royal Statistical Society, Series C 22, 86–91.Google Scholar
  42. Petroni, G.R. and Wolfe, A. (1994) A two sample test for stochastic ordering with interval-censored data.Biometrics 50, 77–87.MATHCrossRefGoogle Scholar
  43. Rai, K., Susarla, V. and van Ryzin, J. (1980) Shrinkage estimation in nonparametric Bayesian survival analysis: A simulation study.Communications in Statistics: Simulation and Computation 3, 271–298.Google Scholar
  44. Schick, A. and Yu, Q. (2000) Consistency of the GMLE with mixed case intervalcensored data.Scandinavian Journal of Statistics 27, 45–55.CrossRefMathSciNetGoogle Scholar
  45. Sinha, D. and Dey, D.K. (1997) Semiparametric Bayesian analysis of survival data.Journal of the American Statistical Association 92, 1195–1212.MATHCrossRefMathSciNetGoogle Scholar
  46. Smith, A.F.M. and Roberts, G.O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods.J. Roy. Statist. Soc. Ser. B,55, 3–23.MATHMathSciNetGoogle Scholar
  47. Smith, P.J., Thompson, T.J. and Jereb, J.A. (1997) A model for intervalcensored tuberculosis outbreak data.Statistics in Medicine 16, 485–496.CrossRefGoogle Scholar
  48. Spiegelhalter, D.et al. (1996) Bayesian Inference Using Gibbs Sampling, Version 0.5, (version ii).MRC Biostatistics Unit, Cambridge.Google Scholar
  49. Susarla, V. and van Ryzin, J. (1976) Nonparametric Bayesian estimation of survival curves from incomplete observations.Journal of the American Statistical Association 71, 897–902.MATHCrossRefMathSciNetGoogle Scholar
  50. Tanner, M. A. and Wong, W.H. (1987) The calculation of posterior distributions by data augmentation.Journal of the American Statistical Association 82, 528–540.MATHCrossRefMathSciNetGoogle Scholar
  51. Turnbull, B.W. (1976) The Empirical distribution function with arbitrarily grouped, censored and truncated data.Journal of the Royal Statistical Society, Series B 38, 290–295.MATHMathSciNetGoogle Scholar
  52. Volberding, P.A., Lagakos, S.W., Grimes, J.M.,et al. (1995) A comparison of immediate with deferred zidovudine therapy for asymptomatic HIV-infected adults with CD4 cell counts of 500 or more per cubic millimeter.New England Journal of Medicine 333, 401–451.CrossRefGoogle Scholar
  53. Younes, N. and Lachin, J. (1997) Link-based models for survival data with interval and continous time censoring.Biometrics 53, 1199–1211.MATHCrossRefMathSciNetGoogle Scholar
  54. Yu, Q., Schick, A., Li, L. and Wong, G.Y.C. (1998) Asymptotic properties of the GMLE with case 2 interval-censored data.Statistics and Probability Letters 37, 223–228.CrossRefMathSciNetGoogle Scholar
  55. Yu, Q., Li, L. and Wong, G.Y.C. (2000) On consistency of the self-consistent estimator of survival functions with interval-censored data.Scandinavian Journal of Statistics 27, 35–44.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Guadalupe Gómez
    • 1
  • M. Luz Calle
    • 2
  • Ramon Oller
    • 3
  1. 1.Department d'EstadísticaUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Department d'Informàtica i MatemàticaUniversitat de VicVicSpain
  3. 3.Department de Matemàtica i InformàticaUniversitat de VicVicSpain

Personalised recommendations