Israel Journal of Mathematics

, Volume 59, Issue 3, pp 327–352 | Cite as

Vector-valued laplace transforms and cauchy problems

  • Wolfgang Arendt


Linear differential equations in Banach spaces are systematically treated with the help of Laplace transforms. The central tool is an “integrated version” of Widder’s theorem (characterizing Laplace transforms of bounded functions). It holds in any Banach space (whereas the vector-valued version of Widder’s theorem itself holds if and only if the Banach space has the Radon-Nikodým property). The Hille-Yosida theorem and other generation theorems are immediate consequences. The method presented here can be applied to operators whose domains are not dense.


Banach Space Cauchy Problem Uniqueness Theorem Linear Differential Equation Banach Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Arendt,Resolvent positive operators, Porc. London Math. Soc., to appear.Google Scholar
  2. 2.
    E. B. Davies,One-parameter Semigroups, Academic Press, London, 1980.MATHGoogle Scholar
  3. 3.
    E. B. Davies and M. M. H. Pang,The Cauchy problem and a generalization of the Hille-Yosida theorem, preprint, 1986.Google Scholar
  4. 4.
    J. Chazarain,Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, J. Functional Anal.7 (1971), 387–446.CrossRefMathSciNetGoogle Scholar
  5. 5.
    G. Da Prato and E. Sinestrari,Differential operators with nondense domain and evolution equations, preprint, 1985.Google Scholar
  6. 6.
    J. Diestel and J. J. Uhl,Vector Measures, Amer. Math. Soc., Providence, Rhode Island, 1977.MATHGoogle Scholar
  7. 7.
    H. O. Fattorini,The Cauchy Problem, Addison-Wesley, London, 1983.MATHGoogle Scholar
  8. 8.
    H. O. Fattorini,Second Order Differential Equations in Banach Spaces, North-Holland, Amsterdam, 1985.MATHGoogle Scholar
  9. 9.
    W. Feller,On the generation of unbounded semigroups of bounded linear operators, Ann. Math. (2)58 (1953), 166–174.MathSciNetGoogle Scholar
  10. 10.
    J. A. Goldstein,Semigroups of Operators and Applications, Oxford University Press, New York, 1985.MATHGoogle Scholar
  11. 11.
    E. Hille and R. S. Phillips,Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publications, Vol. 31, Providence, R.I., 1957.MATHGoogle Scholar
  12. 12.
    H. Kellermann,Integrated semigroups, Dissertation, Tübingen, 1986.Google Scholar
  13. 13.
    J. Kisyński,Semi-groups of operators and some of their applications to partial differential equations, inControl Theory and Topics in Functional Analysis, Vol. II, IAEA, Vienna, 1976.Google Scholar
  14. 14.
    S. G. Krein and M. I. Khazan,Differential equations in a Banach space, J. Soviet Math.30 (1985), 2154–2239.CrossRefMATHGoogle Scholar
  15. 15.
    J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.MATHGoogle Scholar
  16. 16.
    J. L. Lions,Semi-groupes distributions, Portugalae Math.19 (1960), 141–164.MATHGoogle Scholar
  17. 17.
    I. Miyadera,Generation of a strongly continuous semi-groups of operators, Tôhoku Math. J.2 (1952), 109–114.MathSciNetGoogle Scholar
  18. 18.
    I. Miyadera,On the representation theorem by the Laplace transformation of vector-valued functions, Tôhoku Math. J.8 (1956), 170–180.MATHMathSciNetGoogle Scholar
  19. 19.
    I. Miyadera, S. Oharu and N. Okazawa,Generation theorems of linear operators, PRIMS, Kyoto Univ.8 (1973), 509–555.MathSciNetCrossRefGoogle Scholar
  20. 20.
    R. Nagel (ed.),One-parameter Semigroups of Positive Operators, Lecture Notes in Math.1184, Springer, Berlin, 1986.MATHGoogle Scholar
  21. 21.
    F. Neubrander,Integrated semigroups and their applications to the abstract Cauchy problem, preprint, 1986.Google Scholar
  22. 22.
    A. Pazy,Semi-groups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983.Google Scholar
  23. 23.
    R. S. Phillips,Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc.74 (1953), 199–221.CrossRefMathSciNetGoogle Scholar
  24. 24.
    H. H. Schaefer,Banach Lattices and Positive Operators, Springer, Berlin, 1974.MATHGoogle Scholar
  25. 25.
    M. Sova,Problèmes de Cauchy pour équations hyperboliques operationelles à coéfficients non-bornés, Ann. Scuola Norm. Sup. Pisa22 (1968), 67–100.MATHMathSciNetGoogle Scholar
  26. 26.
    Y. Sova,Problèmes de Cauchy paraboliques abstraits de classes supérieurs et les semigroupes distributions, Ricerche Mat.18 (1969), 215–238.MATHMathSciNetGoogle Scholar
  27. 27.
    D. V. Widder,The inversion of the Laplace integral and the related moment problem, Trans. Amer. Math. Soc.36 (1934), 107–200.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    D. V. Widder,An Introduction to Transform Theory, Academic Press, New York, 1971.MATHGoogle Scholar
  29. 29.
    K. Yosida,Functional Analysis, Springer, Berlin, 1978.MATHGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1987

Authors and Affiliations

  • Wolfgang Arendt
    • 1
  1. 1.Mathematisches Institut der UniversitätTübingenFRG

Personalised recommendations