Advertisement

Israel Journal of Mathematics

, Volume 45, Issue 2–3, pp 157–174 | Cite as

A simple presentation for the mapping class group of an orientable surface

  • Bronislaw Wajnryb
Article

Abstract

LetF n.k be an orientable compact surface of genusn withk boundary components. For a suitable choice of 2n + 1 simple closed curves onF n,1 the corresponding Dehn twists generate bothM n,o andM n,1. A complete system of relations is determined for these generators and the presentations ofM n,0 andM n,1 obtained in this way are much simpler than the known presentations.

Keywords

Boundary Component Braid Group Mapping Class Group Orientable Surface Simple Move 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bergau and J. Mennicke,Über topologische Abbildungen der Bretzelflache vom Geschlecht 2, Math. Z.74 (1960), 414–435.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. Birman,Braids, links and mapping class groups, Ann. Math. Stud.82 (1975).Google Scholar
  3. 3.
    J. Birman and H. Hilden,On mapping class groups of closed surfaces as covering spaces, inAdvances in the Theory of Riemann Surfaces, Ann. Math. Stud.66 (1971).Google Scholar
  4. 4.
    E. Brieskorn and K. Saito,Artin Gruppen und Coxeter Gruppen, Invent. Math.17 (1972), 245–271.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Dehn,Die Gruppe der Abbildungklassen, Acta Math.69 (1938), 135–206.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Harer,The second homology group of the mapping class group of an orientable surface, to appear.Google Scholar
  7. 7.
    A. Hatcher and W. Thurston,A presentation for the mapping class group of a closed orientable surface, Topology19 (1980), 221–237.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Humphries,Generators for the mapping class group, inTopology of Low-dimensional Manifolds, Lecture Notes in Mathematics722, Springer, Berlin, 1979, pp. 44–47.Google Scholar
  9. 9.
    W. B. R. Lickorish,A finite set of generators for the homeotopy group of a 2-manifold, Proc: Cambridge Philos. Soc.60 (1964), 769–778.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University 1983

Authors and Affiliations

  • Bronislaw Wajnryb
    • 1
  1. 1.Mathematics FacultyTechnion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations