Israel Journal of Mathematics

, Volume 86, Issue 1–3, pp 253–275

Piecewise-polynomial approximation of functions fromH((0, 1)d), 2ℓ=d, and applications to the spectral theory of the Schrödinger operator

  • M. Solomyak
Article

Abstract

For the selfadjoint Schrödinger operator −Δ−αV on ℝ2 the number of negative eigenvalues is estimated. The estimates obtained are based upon a new result on the weightedL2-approximation of functions from the Sobolev spaces in the cases corresponding to the critical exponent in the embedding theorem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    R. A. Adams,Sobolev Spaces, Academic Press, New York-San Francisco-London, 1975.MATHGoogle Scholar
  2. [B]
    M. Sh. Birman,On he spectrum of singular boundary value problems, Mat. Sb.55 (1961), 125–174; English transl.: Amer. Math. Soc. Transl. (2)53 (1966), 23–80.MathSciNetGoogle Scholar
  3. [BB]
    M. Sh. Birman and V. V. Borzov,On the asymptotics of the discrete spectrum for certain singular differential operators, Probl. Mat. Fiz.5 (1971), 24–38; English transl. in: Topics in Math. Phys.5 (1972), 19–30.MathSciNetGoogle Scholar
  4. [BS1]
    M. Sh. Birman and M. Z. Solomyak,Piecewise-polynomial approximations of functions of the classes W pα, Mat. Sb.73 115 (1967), 331–355; English transl. in: Math. USSR-Sb.2 (1967).Google Scholar
  5. [BS2]
    M. Sh. Birman and M. Z. Solomyak,Qualitative analysis in Sobolev imbedding theorems and applications to spectral theory, Tenth Math. Summer School (Katsiveli/Nalchik, 1972), Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1974, pp. 5–189; English transl. Amer. Math. Soc. Transl. (2)114 (1980)Google Scholar
  6. [BS3]
    M. Sh. Birman and M. Z. Solomyak,Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, Adv. in Sov. Math., Vol. 7 (M. Birman, ed.), AMS, 1991, pp. 1–55.MathSciNetGoogle Scholar
  7. [C]
    M. Cwikel,Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. Math.106 (1977), 93–100.CrossRefMathSciNetGoogle Scholar
  8. [EK]
    Yu.V. Egorov and V.A. Kondrat’ev,On the negative spectrum of an elliptic operator, Mat. Sb.181 (1990), 147–166; English transl. in: Math. USSR-Sb.69 (1991), 155–177.Google Scholar
  9. [G]
    M. de Guzmán,Differentiation of Integrals inn, Springer-Verlag, Berlin-Heidelberg-New York, 1975.Google Scholar
  10. [HMT]
    J. A. Hempel, G. R. Morris and N. S. Trudinger,On the sharpness of a limiting case of the Sobolev imbedding theorem, Bull. Austral. Math. Soc.3 (1970), 369–373.MATHMathSciNetCrossRefGoogle Scholar
  11. [KR]
    M. A. Krasnosel’skii and Ya. B. Rutickii,Convex Functions and Orlicz Spaces, Moscow, Fizmatgiz, 1958 (Russian); English transl.: P. Nordhoff, Groningen, 1961.Google Scholar
  12. [L1]
    E. Lieb,The number of bound states of one-body Schrödinger operators and the Weyl problem, Bull. Amer. Math. Soc.82 (1976), 751–753.MATHMathSciNetGoogle Scholar
  13. [L2]
    E. Lieb,The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. AMS Symposia in Pure Math.36 (1980), 241–252.MathSciNetGoogle Scholar
  14. [L3]
    E. Lieb,On characteristic exponents in turbulence, Comm. Math. Phys.92 (1984), 473–480.MATHCrossRefMathSciNetGoogle Scholar
  15. [M]
    V.G. Maz’ya,S.L. Sobolev spaces, Izdat. Leningr. Univ., Leningrad, 1985; English transl.: Springer-Verlag, Berlin, 1985.Google Scholar
  16. [RS]
    M. Reed and B. Simon,Methods of Modern Mathematical Physics IV, Analysis of Operators, Academic Press, New York, 1978.MATHGoogle Scholar
  17. [R1]
    G. V. Rozenblum,The distribution of the discrete spectrum for singular differential operators, Dokl. Akad. Nauk SSSR202 (1972), 1012–1015; English transl. in: Soviet Math. Dokl.13 (1972).MathSciNetGoogle Scholar
  18. [R2]
    G. V. Rozenblum,Distribution of the discrete spectrum of singular differential operators, Izv. Vyssh. Uchebn. Zaved. Mat., No. 1 (1976) 75–86; English transl. in: Soviet Math. (Iz. VUZ.)20 (1976).Google Scholar
  19. [S1]
    B. Simon,Weak trace ideals and the number of bound states of Schrödinger operators, Trans. Amer. Math. Soc.224 (1976), 367–380.MATHCrossRefMathSciNetGoogle Scholar
  20. [S2]
    B. Simon,Trace Ideals and their Applications, Cambridge Univ. Press, Cambridge, 1979.MATHGoogle Scholar

Copyright information

© The Magnes Press 1994

Authors and Affiliations

  • M. Solomyak
    • 1
  1. 1.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations