Israel Journal of Mathematics

, Volume 129, Issue 1, pp 109–117 | Cite as

On thek-systems of a simple polytope

  • Michael Joswig
  • Volker Kaibel
  • Friederike Körner
Article

Abstract

Ak-system of the graphGP of a simple polytopeP is a set of induced subgraphs ofGP that shares certain properties with the set of subgraphs induced by thek-faces ofP. This new concept leads to polynomial-size certificates in terms ofGP for both the set of vertex sets of facets and for abstract objective functions (AOF) in the sense of Kalai. Moreover, it is proved that an acyclic orientation yields an AOF if and only if it induces a unique sink on every 2-face.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Achatz and P. Kleinschmidt,Reconstructing a simple polytope from its graph, inPolytopes—Combinatorics and Computation (G. Kalai and G. M. Ziegler, eds.), DMV Seminar Band, Vol. 29, Birkhäuser, Basel, 2000, pp. 155–165.Google Scholar
  2. [2]
    R. Blind and P. Mani-Levitska,On puzzles and polytope isomorphisms, Aequationes Mathematicae34 (1987), 287–297.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    M. Develin, e-mail conversation, Nov 2000, develin@bantha.org.Google Scholar
  4. [4]
    J. Edmonds,Maximum matching and a polyhedron with 0,1-vertices, Journal of Research of the National Bureau of Standards-B (Mathematics and Mathematical Physics)69B (1965), 125–130.MathSciNetGoogle Scholar
  5. [5]
    J. Edmonds,Paths, trees, and flowers, Canadian Journal of Mathematics17 (1965), 449–467.MATHMathSciNetGoogle Scholar
  6. [6]
    Ch. Haase and G. M. Ziegler,Examples and counterexamples for Perles’ conjecture, to appear in Discrete Computational Geometry.Google Scholar
  7. [7]
    P. L. Hammer, B. Simeone, T. M. Liebling and D. de Werra,From linear separability to unimodality: A hierarchy of pseudo-boolean functions, SIAM Journal on Discrete Mathematics1 (1988), 174–184.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    G. Kalai,A simple way to tell a simple polytope from its graph, Journal of Combinatorial Theory, Series A49 (1988), 381–383.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. Richter-Gebert,Realization Spaces of Polytopes, Lecture Notes in Mathematics, Vol. 1643, Springer, Berlin, 1996.Google Scholar
  10. [10]
    G. M. Ziegler,Lectures on Polytopes, Springer-Verlag, New York, 1995; revised edition 1998.MATHGoogle Scholar

Copyright information

© Hebrew University 2002

Authors and Affiliations

  • Michael Joswig
    • 1
  • Volker Kaibel
    • 1
  • Friederike Körner
    • 1
  1. 1.Institut für MathematikTechnische Universität Berlin, Fakultät IIBerlinGermany

Personalised recommendations