Israel Journal of Mathematics

, Volume 87, Issue 1–3, pp 403–428 | Cite as

Pseudogroups of isometries of ℝ and Rips’ theorem on free actions on ℝ-trees

  • D. Gaboriau
  • G. Levitt
  • F. Paulin


We give a proof of Rips’ theorem that a finitely generated group acting freely on an ℝ-tree is a free product of free abelian groups and surface groups, using methods of dynamical systems and measured foliations.


Normal Subgroup Fundamental Group Cayley Graph Surface Group Free Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ada]
    S. Adams,Trees and amenable equivalence relations, Ergodic Theory and Dynamical Systems10 (1990), 1–14.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [AL]
    P. Arnoux and G. Levitt,Sur l’unique ergodicité des 1-formes fermées singulières, Inv. Math.84 (1986), 141–156.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [AY]
    P. Arnoux and J.-C. Yoccoz,Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sc. Paris292 (1981), 75–78.zbMATHMathSciNetGoogle Scholar
  4. [BF]
    M. Bestvina and M. Feighn,Stable actions of groups on real trees, preprint (Feb. 1992).Google Scholar
  5. [CM]
    M. Culler and J. Morgan,Group actions on ℝ-trees, Proc. Lond. Math. Soc.55 (1987), 571–604.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [DN]
    C. Danthony and A. Nogueira,Measured foliations on nonorientable surfaces, Ann. Scient. Ec. Norm. Sup.23 (1990), 469–494.zbMATHMathSciNetGoogle Scholar
  7. [FLP]
    A. Fathi, F. Laudenbach and V. Poenaru,Travaux de Thurston sur les surfaces, Astérisque66–67, Soc. Math. France (1977).Google Scholar
  8. [Gab]
    D. Gaboriau,Dynamique des systèmes d’isométries et actions de groupes sur les arbres réels, Thèse, Toulouse, June 1993.Google Scholar
  9. [GLP2]
    D. Gaboriau, G. Levitt and F. Paulin,Pseudogroups of isometries ofand constructions of ℝ-trees, Ergodic Theory & Dynamical Systems, to appear.Google Scholar
  10. [Gru]
    K. W. Gruenberg,Residual properties of infinite soluble groups, Proc. London Math. Soc.7 (1957), 29–62.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [GS]
    H. Gillet and P. Shalen,Dendrology of groups in low ℚ-ranks, J. Diff. Geom.32 (1990), 605–712.zbMATHMathSciNetGoogle Scholar
  12. [Gus]
    P. Gusmao,Groupes et feuilletages de codimension 1, Thèse, Toulouse, June 1993.Google Scholar
  13. [Hae1]
    A. Haefliger,Groupoïdes d’holonomie et classifiants, inStructures transverses des feuilletages, Astérisque116, Soc. Math. France (1984), 70–97.MathSciNetGoogle Scholar
  14. [Hae2]
    A. Haefliger,Pseudogroups of local isometries, inProc. Vth Coll. in Differential Geometry (L.A. Cordero, ed.), Research Notes in Math131, Pitman, London, 1985, pp. 174–197.Google Scholar
  15. [Ima]
    H. Imanishi,On codimension one foliations defined by closed one forms with singularities, J. Math. Kyoto Univ.19 (1979), 285–291.zbMATHMathSciNetGoogle Scholar
  16. [Kea]
    M. Keane,Interval exchange transformations, Math. Z.141 (1975), 25–31.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [Lev1]
    G. Levitt, 1-formes fermées singulières et groupe fondamental, Inv. Math.88 (1987), 635–667.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [Lev2]
    G. Levitt,Groupe fondamental de l’espace des feuilles dans les feuilletages sans holonomie, J. Diff. Geom.31 (1990), 711–761.zbMATHMathSciNetGoogle Scholar
  19. [Lev3]
    G. Levitt,La dynamique des pseudogroupes de rotations, Inv. Math.113 (1993), 633–670.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [Lev4]
    G. Levitt,Constructing free actions on ℝ-trees, Duke Math. J.69 (1993), 615–633.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Lev5]
    G. Levitt,On the cost of generating an equivalence relation, preprint.Google Scholar
  22. [Mak]
    G. S. Makanin,Equations in a free group, Math. USSR Izv.21 (1983), 145–163.CrossRefGoogle Scholar
  23. [Mor1]
    J. Morgan, Λ-trees and their applications, Bull. Am. Math. Soc.26 (1992), 87–112.zbMATHGoogle Scholar
  24. [Mor2]
    J. Morgan,Notes on Rips’ lectures at Columbia University, October 1991, manuscript.Google Scholar
  25. [MS1]
    J. Morgan and P. Shalen,Valuations, trees and degeneration of hyperbolic structures II, III, Ann. Math.122 (1988), 403–519.MathSciNetGoogle Scholar
  26. [MS2]
    J. Morgan and P. Shalen,Free actions of surface groups on ℝ-trees, Topology30 (1991), 143–154.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [Pau]
    [Pau]F. Paulin,A dynamical system approach to free actions on ℝ-trees: a survey with complements, to appear in “Proceedings of the Haifa 1992 Conference on Geometric Topology”, Contemp. Math., Amer. Math. Soc.Google Scholar
  28. [Raz]
    A. A. Razborov,On systems of equations in a free group, Math. USSR Izv.25 (1985), 115–162.CrossRefGoogle Scholar
  29. [Rim1]
    F. Rimlinger,Free actions on ℝ-trees, Trans. Am. Math. Soc.332 (1992), 315–331.CrossRefMathSciNetGoogle Scholar
  30. [Rim2]
    F. Rimlinger, ℝ-trees and normalization of pseudogroups, Experimental Mathematics1 (1992), 95–114.zbMATHMathSciNetGoogle Scholar
  31. [Rim3]
    F. Rimlinger,Two-complexes with similar foliations, preprint (1992).Google Scholar
  32. [Sha1]
    P. Shalen,Dendrology of groups: an introduction, inEssays in Group Theory (S.M. Gersten, ed.), M.S.R.I Publ.8, Springer-Verlag, Berlin, 1987.Google Scholar
  33. [Sha2]
    P. Shalen,Dendrology and its applications, inGroup Theory from a Geometrical Viewpoint (E. Ghys, A. Haefliger and A. Verjovsky, eds.), World Scientific, Singapore, 1991.Google Scholar

Copyright information

© Hebrew University 1994

Authors and Affiliations

  • D. Gaboriau
    • 1
  • G. Levitt
    • 1
  • F. Paulin
    • 2
  1. 1.Laboratoire de Topologie et Géométrie C.N.R.S. URA 1408Université Toulouse IIIToulouse CedexFrance
  2. 2.Unité de Mathématiques C.N.R.S. UMR 128Ecole Normale Supérieure de LyonLyon Cedex 07France

Personalised recommendations