Israel Journal of Mathematics

, Volume 87, Issue 1–3, pp 325–335 | Cite as

Affine analog of the proper base change theorem

  • Ofer Gabber
Article

Abstract

We prove a rigidity property for the étale cohomology with torsion coefficients of affine Hensel pairs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Artin,On the Joins of Hensel Rings, Adv. in Math.7 (1971), 282–296.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Artin, A. Grothendieck and J.L. Verdier,Théorie des Topos et Cohomologie Étale des Schémas (SGA4), Springer Lecture Notes in Mathematics, Vols. 289, 270, 305, 1972–1973.Google Scholar
  3. [3]
    R. Elkik,Equations à coefficients dans un anneau hensélien, Ann. Sci. Ec. Norm. Super.6 (1973), 553–607.MATHMathSciNetGoogle Scholar
  4. [4]
    K. Fujiwara,Theory of tubular neighborhoods in étale topology, preprint, 1992.Google Scholar
  5. [5]
    J. Giraud,Cohomologie non abélienne, Springer-Verlag, Berlin, 1971.MATHGoogle Scholar
  6. [6]
    A. Grothendieck and J. Dieudonné,Elements de Géométrie Algébrique, Publ. Math. IHES, Vols 4, 8, 11, 17, 20, 24, 28, 32, 1960–1967.Google Scholar
  7. [7]
    J.S. Milne,Étale Cohomology, Princeton University Press, 1980.Google Scholar
  8. [8]
    M. Raynaud,Anneaux locaux henséliens, Springer Lecture Notes in Mathematics, Vol. 169, 1970.Google Scholar

Copyright information

© Hebrew University 1994

Authors and Affiliations

  • Ofer Gabber
    • 1
  1. 1.I.H.E.SBures-sur-YvetteFrance

Personalised recommendations