Israel Journal of Mathematics

, Volume 87, Issue 1–3, pp 33–35 | Cite as

Bernoullicity of solenoidal automorphisms and global fields

  • Douglas Lind
  • Klaus Schmidt
Article
  • 53 Downloads

Abstract

We show that ergodic automorphisms of solenoids are isomorphic to Bernoulli shifts by using the product formula for global fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    N. Aoki,A simple proof of the Bernoullicity of ergodic automorphisms on compact abelian groups, Israel J. Math.38 (1981), 189–197.MATHCrossRefMathSciNetGoogle Scholar
  2. [AT]
    N. Aoki and H. Totoki, Ergodic automorphisms ofT∞ are Bernoulli transformations, Publ. Res. Inst. Math. Sci.10 (1975), 535–544.MathSciNetGoogle Scholar
  3. [C]
    P. M. Cohn,Algebraic Numbers and Algebraic Functions, Chapman and Hall, London, 1991.MATHGoogle Scholar
  4. [K]
    Y. Katznelson,Ergodic automorphisms of T n are Bernoulli shifts, Israel J. Math.10 (1971), 186–195.MATHMathSciNetGoogle Scholar
  5. [L1]
    D. Lind,Ergodic automorphisms of the infinite torus are Bernoulli, Israel J. Math.17 (1974), 162–168.MATHMathSciNetCrossRefGoogle Scholar
  6. [L2]
    D. Lind,The structure of skew products with ergodic group automorphisms, Israel J. Math.18 (1977), 205–248.CrossRefMathSciNetGoogle Scholar
  7. [L3]
    D. Lind,Ergodic group automorphisms are exponentially recurrent, Israel J. Math.41 (1982), 313–320.MATHCrossRefMathSciNetGoogle Scholar
  8. [L4]
    D. Lind,Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory & Dynamical Systems2 (1982), 49–68.MATHMathSciNetCrossRefGoogle Scholar
  9. [MT]
    G. Miles and K. Thomas,Generalized torus automorphisms are Bernoullian, inStudies in Probability Theory and Ergodic Theory, Advances in Math. Suppl. Ser., Vol. 2 (1978), 231–249.MathSciNetGoogle Scholar

Copyright information

© Hebrew University 1994

Authors and Affiliations

  • Douglas Lind
    • 1
  • Klaus Schmidt
    • 1
  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations