Israel Journal of Mathematics

, Volume 73, Issue 2, pp 151–159

Groups generating transversals to semisimple lie group actions

  • Robert J. Zimmer


We describe those discrete groups with finite measure preserving actions that are stably orbit equivalent to such an action of a higher rank simple Lie group. This is applied to obtain information on the question of when ergodic equivalence relations are generated by a free action of a group.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Adams,An equivalence relation that is not freely generated, Proc. Am. Math. Soc.102 (1988), 565–566.MATHCrossRefGoogle Scholar
  2. 2.
    J. Feldman, P. Hahn and C. C. Moore,Orbit structure and countable sections for actions of continuous groups, Adv. in Math.28 (1978), 186–230.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Feldman and C. C. Moore,Ergodic equivalence relations, cohomology, and von Neumann algebras I, Trans. Am. Math. Soc.234 (1977), 289–324.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Feldman, C. E. Sutherland and R. J. Zimmer,Subrelations of ergodic equivalence relations, Ergodic Theory Dynamical Systems9 (1989), 239–269.MATHMathSciNetGoogle Scholar
  5. 5.
    D. Witte,Measurable quotients of unipotent translations on homogeneous spaces, preprint.Google Scholar
  6. 6.
    R. J. Zimmer,Ergodic Theory and Semisimple Groups, Birkhauser, Boston, 1984.MATHGoogle Scholar
  7. 7.
    R. J. Zimmer,Ergodic actions of semisimple groups and product relations, Ann. of Math.118 (1983), 9–19.CrossRefMathSciNetGoogle Scholar
  8. 8.
    R. J. Zimmer,Arithmeticity of holonomy groups of Lie foliations, J. Am. Math. Soc.1 (1988), 35–58.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. J. Zimmer,Orbit equivalence, Lie groups, and foliations, Proc. Center for Math. Anal. Vol. 16 (M. Cowling, C. Meaney and W. Moran, eds.), Australian National Univ., 1988, pp. 341–349.MathSciNetGoogle Scholar
  10. 10.
    R. J. Zimmer,Representations of fundamental groups of manifolds with a semisimple transformation group, J. Am. Math. Soc.2 (1989), 201–213.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. J. Zimmer,Ergodic theory and the automorphism group of a G-structure, inGroup Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics (C. C. Moore, ed.), Springer, New York, 1987, pp. 247–278.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1991

Authors and Affiliations

  • Robert J. Zimmer
    • 1
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations