Advertisement

Plant Molecular Biology Reporter

, Volume 19, Issue 3, pp 249–260 | Cite as

Angiosperm DNA contamination by endophytic fungi: Detection and methods of avoidance

  • Dayle E. Saar
  • Neil O. Polans
  • Paul D. Sørensen
  • Melvin R. Duvall
Protocols

Abstract

PCR primers with broad applicability are useful in many molecular-based studies; however, their universality can compromise results when DNA contaminants also are amplified. Eighty-one templates ofDahlia (Asteraceae), primarily extracted from native Mexican populations, were tested for the presence of fungal contaminants; out of these, almost 1 in 7 templates (13.6%) was contaminated. In a second survey across 12 angiosperm families using material collected in Illinois, fungal DNA contaminated over 60% of the templates analyzed. Endophytic fungi often are symptomless symbionts living within the above-ground tissues of their angiosperm hosts and are not affected by surface sterilization techniques. Recent studies have revealed their widespread occurrence and broad host range. We also present field strategies for obtaining plant material to reduce the possibility of collecting infected leaves and a simple screening test for detecting fungal DNA in angiosperm templates.

Key words

angiosperm DNA Ascomycota Basidiomycota Dahlia DNA template endophytic fungi fungal contamination Zygomycota 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF, Gish W and Miller W (1990) Basic local alignment tool. J Mol Biol 215: 403–410.PubMedGoogle Scholar
  2. Bacon CW and Siegel MR (1988) Journal of Production Agriculture 1: 45–51.Google Scholar
  3. Baldwin BG and Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: Congruence of ETS and ITS trees ofCalycadenia (Compositae). Mol Phylogenet Evol 10(3): 449–463.PubMedCrossRefGoogle Scholar
  4. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS and Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82: 247–277.CrossRefGoogle Scholar
  5. Blaney C (1995) Fungi in the family tree. BioScience 45: 746.CrossRefGoogle Scholar
  6. Bose SR (1947) Hereditary (seed-borne) symbiosis inCasuarina equisetifolia. Nature 159: 152–514.Google Scholar
  7. Boursnell JG (1950) The symbiotic seed-borne fungus in the Cistaceae. I. Distribution and function of the fungus in the seedling and in the tissues of the mature plant. Annals of Botany 14: 217–214.Google Scholar
  8. Carroll G (1986) The biology of endophytism in plants with particular reference to woody perennials. In: Fokkema NJ and Heuvel JVD (eds), Microbiology of the Phyllosphere, pp. 205–222, Cambridge University Press, New York.Google Scholar
  9. Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69: 2–9.CrossRefGoogle Scholar
  10. Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69: 10–16.CrossRefGoogle Scholar
  11. Clay K (1990) Fungal endophytes of grasses. Annual Review of Ecology and Systematics 21: 275–297.CrossRefGoogle Scholar
  12. Clay K and Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285: 1742–1744.PubMedCrossRefGoogle Scholar
  13. Clay K, Marks S and Cheplink GP (1993) Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74: 1767–1777.CrossRefGoogle Scholar
  14. Dean AD and Greenwald JE (1995) Use of filtered pipet tips to elute DNA from agarose gels. BioTechniques 18: 980.PubMedGoogle Scholar
  15. De Bary A (1866) Morphologie und physiologie der plize. Flechten und Myxomyceten, Englemann, Leipzig.Google Scholar
  16. Downie SR and Katz-Downie DS (1996) A molecular phylogeny of Apiaceae subfamily Apiodeae: evidence from nuclear ribosomal DNA transcribed spacer sequences. American Journal of Botany 83: 234–251.CrossRefGoogle Scholar
  17. Farr DF, Hills GF, Chamuris GP and Rossman AY (1989) Fungi on plants and plant products in the United States. APS Press, St. Paul, MN.Google Scholar
  18. Gupta M, Chyi Y-S, Romero-Severson J and Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89: 998–1006.CrossRefGoogle Scholar
  19. O'Donnell J and Dickinson CH (1980) Pathogenicity ofAlternaria andCladosporium isolates onPhaseolus. Transactions of the British Mycological Society 74: 335–342.CrossRefGoogle Scholar
  20. O'Kane SL, Schaal BA and Al-Shehbaz IA (1996) The origins ofArabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Systematic Botany 21: 559–566.CrossRefGoogle Scholar
  21. Petrini O (1986) Taxonomy of endophytic fungi of arial plant tissues. In: Fokkema NJ and Heuvel JVD (eds), Microbiology of the Phyllosphere, pp. 175–187, Cambridge University Press, New York.Google Scholar
  22. Petrini O (1992) Fungal endophytes of tree leaves. In: Andrews JH and Hirano SS (eds), Microbial Ecology of Leaves, pp. 179–197, Springer-Verlag, New York.Google Scholar
  23. Petrini O, Stone J and Carroll FE (1982) Endophytic fungi in evergreen shrubs in western Oregon: a preliminary study. Can J Bot 60: 789–796.CrossRefGoogle Scholar
  24. Rice JS, Pinkerton BW, Stringer WC and Undersander DJ (1990) Seed production in tall fescue as affected by fungal endophyte. Crop Science 30: 1303–1305.CrossRefGoogle Scholar
  25. Roalson EH and Friar EA (2000) Infrageneric classification ofEleocharis (Cyperaceae) revisited: evidence from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. Systematic Botany 25: 323–336.CrossRefGoogle Scholar
  26. Saar DE (1999) A phylogenetic analysis of the genusDahlia (Asteraceae): an interdisciplinary study. Ph.D. Dissertation. Northern Illinois University, DeKalb, IL.Google Scholar
  27. Saghai-Maroof MA, Soliman KL, Jorgensen RA and Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24): 8014–8018.PubMedCrossRefGoogle Scholar
  28. Sang T, Crawford DJ and Stuessy TS (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer regions of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92(15): 6813–6817.PubMedCrossRefGoogle Scholar
  29. Schultz B, Wanke U, Draeger S and Aust H-J (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycology Research 97: 1447–1450.CrossRefGoogle Scholar
  30. Soltis DE and Soltis PS (1998) Choosing an approach and an appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS and Doyle JJ (eds), Molecular Systematics of Plants II: DNA Sequencing, pp 1–42, Kluwer Academic Publishers, Boston, MA.CrossRefGoogle Scholar
  31. Sun Y, Skinner DZ, Liang GH and Hulbert SH (1994) Phylogenetic analysis ofSorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89: 26–32.CrossRefGoogle Scholar
  32. White JF (1987) The widespread distribution of endophytes in Poaceae. Plant Disease 71: 340–342.CrossRefGoogle Scholar
  33. White TJ, Burns T, Lee S and Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ and White TJ (eds), PCR Protocols: a Guide to Methods and Applications, pp. 315–322, Academic Press, Inc, San Diego, CA.Google Scholar
  34. Zhang W, Wendel JF and Clark LG (1997) Bamboozled again! Inadvertent isolation of fungal rDNA sequences from bamboos (Poaceae: Bambusoideae). Mol Phylogenet Evol 8(2): 205–217.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Dayle E. Saar
    • 1
  • Neil O. Polans
    • 1
  • Paul D. Sørensen
    • 1
  • Melvin R. Duvall
    • 1
  1. 1.Department of Biological Sciences and Plant Molecular Biology CenterNorthern Illinois UniversityDeKalbUSA

Personalised recommendations