Israel Journal of Mathematics

, Volume 149, Issue 1, pp 1–19 | Cite as

Convergence of polynomial ergodic averages



We prove theL2 convergence for an ergodic average of a product of functions evaluated along polynomial times in a totally ergodic system. For each set of polynomials, we show that there is a particular factor, which is an inverse limit of nilsystems, that controls the limit behavior of the average. For a general system, we prove the convergence for certain families of polynomials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AGH63]
    L. Auslander, L. Green and G. Hahn,Flows on Homogeneous Spaces, Annals of Mathematics Studies53, Princeton University Press, 1963.Google Scholar
  2. [Be87]
    V. Bergelson,Weakly mixing PET, Ergodic Theory and Dynamical Systems7 (1987), 337–349.MATHMathSciNetGoogle Scholar
  3. [BL96]
    V. Bergelson and A. Leibman,Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, Journal of the American Mathematical Society9 (1996), 725–753.MATHCrossRefMathSciNetGoogle Scholar
  4. [FK05]
    N. Frantzikinakis and B. Kra,Polynomial averages converge to the product of integrals, Israel Journal of Mathematics148 (2005), 267–276.MATHMathSciNetGoogle Scholar
  5. [F77]
    H. Furstenberg,Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, Journal d’Analyse Mathématique31 (1977), 204–256.MATHMathSciNetCrossRefGoogle Scholar
  6. [FW96]
    H. Furstenberg and B. Weiss,A mean ergodic theorem for 1/NΣn=1n f(T n x)g(T n 2 x), inConvergence in Ergodic Theory and Probability (V. Bergelson, P. March and J. M. Rosenblatt, eds.), Walter de Gruyter & Co, Berlin, New York, 1996, pp. 193–227.Google Scholar
  7. [HK02]
    B. Host and B. Kra,Non conventional ergodic averages and nilmanifolds, Annals of Mathematics, to appear.Google Scholar
  8. [L02]
    A. Leibman,Pointwise convergence of ergodic averages for polynomial sequences of rotations of a nilmanifold, Ergodic Theory and Dynamical Systems, to appear.Google Scholar
  9. [Le91]
    E. Lesigne,Sur une mil-variété, les parties minimales associées à une translation sont uniquement ergodiques, Ergodic Theory and Dynamical Systems11 (1991), 379–391.MATHMathSciNetGoogle Scholar
  10. [Pa69]
    W. Parry,Ergodic properties of affine transformations and flows on nilmanifolds, American Journal of Mathematics91 (1969), 757–771.MATHCrossRefMathSciNetGoogle Scholar
  11. [Pa70]
    W. Parry,Dynamical systems on nilmanifolds, The Bulletin of the London Mathematical Society2 (1970), 37–40.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University 2005

Authors and Affiliations

  1. 1.Équipe d’analyse et de mathématiques appliquéesUniversité de Marne la ValléeMarne la Vallée CedexFrance
  2. 2.Department of Mathematics, McAllister B uildingThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations