Israel Journal of Mathematics

, Volume 141, Issue 1, pp 157–183 | Cite as

Generalized Sasakian-space-forms

  • Pablo Alegre
  • David E. Blair
  • Alfonso Carriazo


Generalized Sasakian-space-forms are introduced and studied. Many examples of these manifolds are presented, by using some different geometric techniques such as Riemannian submersions, warped products or conformal and related transformations. New results on generalized complex-space-forms are also obtained.


Vector Field Sectional Curvature Curvature Tensor Warped Product Sasakian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. E. Blair,The theory of quasi-Sasakian structures, Journal of Differential Geometry1 (1967), 331–345.zbMATHMathSciNetGoogle Scholar
  2. [2]
    D. E. Blair,Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston, 2002.zbMATHGoogle Scholar
  3. [3]
    P. Bueken and L. Vanhecke,Curvature characterizations in contact geometry, Rivista di Matematica della Università di Parma (4)14 (1988), 303–313.zbMATHMathSciNetGoogle Scholar
  4. [4]
    B. Y. Chen,Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics 1, World Scientific, Singapore, 1984.zbMATHGoogle Scholar
  5. [5]
    S. Ianus and D. Smaranda,Some remarkable structures on the product of an almost contact metric manifold with the real line, inNational Colloquium on Geometry and Topology, University of Timişoara, 1977, pp. 107–110.Google Scholar
  6. [6]
    D. Janssens and L. Vanhecke,Almost contact structures and curvature tensors, Kodai Mathematical Journal4 (1981), 1–27.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    K. Kenmotsu,A class of almost contact Riemannian manifolds, Tôhoku Mathematical Journal24 (1972), 93–103.zbMATHMathSciNetGoogle Scholar
  8. [8]
    G. D. Ludden,Submanifolds of cosymplectic manifolds, Journal of Differential Geometry4 (1970), 237–244.zbMATHMathSciNetGoogle Scholar
  9. [9]
    J. C. Marrero,The local structure of trans-Sasakian manifolds, Annali di Matematica Pura ed Applicata162 (1992), 77–86.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Z. Olszak,On the existence of generalized complex space forms, Israel Journal of Mathematics65 (1989), 214–218.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    B. O’Neill,Semi-Rimannian Geometry with Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York, 1983.Google Scholar
  12. [12]
    J. A. Oubiña,New classes of almost contact metric structures, Publications Mathematicae Debrecen32 (1985), 187–193.zbMATHGoogle Scholar
  13. [13]
    R. Sharma,On the curvature of contact metric manifolds, Journal of Geometry53 (1995), 179–190.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    S. Suguri and S. Nakayama,D-conformal deformations on almost contact metric structure, Tensor. New Series28 (1974), 125–129.zbMATHMathSciNetGoogle Scholar
  15. [15]
    S. Tanno,The topology of contact Riemannian manifolds, Illinois Journal of Mathematics12 (1968), 700–717.zbMATHMathSciNetGoogle Scholar
  16. [16]
    F. Tricerri and L. Vanhecke,Curvature tensors on almost Hermitian manifolds, Transactions of the American Mathematical Society267 (1981), 365–398.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    I. Vaisman,Conformal changes of almost contact metric structures, inGeometry and Differential Geometry, Lecture Notes in Mathematics792, Springer-Verlag, Berlin, 1980, pp. 435–443.CrossRefGoogle Scholar
  18. [18]
    L. Vanhecke,Almost Hermitian manifolds with J-invariant Riemann curvature tensor, Rendiconti del Seminario Mathematico della Universitá e Politecnico di Torino34 (1975–76), 487–498.MathSciNetGoogle Scholar

Copyright information

© Hebrew University 2004

Authors and Affiliations

  • Pablo Alegre
    • 1
  • David E. Blair
    • 2
  • Alfonso Carriazo
    • 1
  1. 1.Department of Geometry and Topology, Faculty of MathematicsUniversity of SevillaSevillaSpain
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations