Advertisement

Israel Journal of Mathematics

, Volume 9, Issue 3, pp 316–329 | Cite as

Existence of nondetermined sets for some two person games over reals

  • Gadi Moran
Article

Abstract

Various two person games with perfect information over reals are shown to have a nondetermined set. A game formulated by Mycielski is solved.

Keywords

Perfect Information Finite Sequence Winning Strategy Game Rule Inaccessible Cardinal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jan Mycielski,On the axiom of determinateness, Fund. Math.53 (1964), 202–224.MathSciNetGoogle Scholar
  2. 2.
    S. Hartman,Bemerkungen über das Spiel von Banach und Mazur, Colloq. Math.4 (1957), 261.MathSciNetGoogle Scholar
  3. 3.
    M. Reichbach,Ein Spiel von Banach und Mazur, Colloq. Math.5 (1957), 16–23.MathSciNetGoogle Scholar
  4. 4.
    A. Turowicz,Sur une propriété des nombres irrationels, Ann. Polon. Math.2 (1955), 103–105.zbMATHMathSciNetGoogle Scholar
  5. 5.
    S. Zabrzycki,On the game of Banach and Mazur, Colloq. Math.4 (1957), 227–229.MathSciNetGoogle Scholar
  6. 6.
    H. Hanani,A generalization of the Banach and Mazur game, Trans. Amer. Math. Soc.94 (1960), 86–102.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H. Hanani and M. Reichbach,Some characterizations of a class of unavoidable compact sets in the game of Banach and Mazur, Pacific J. Math.11 (1961), 945–959.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Jan Mycielski,Continuous games with perfect informations, Advances in Game Theory, Princeton (1964), 103–112.Google Scholar
  9. 9.
    Jan Mycielski,On the axiom of determinateness II, Fund. Math.59 (1966), 203–212.zbMATHMathSciNetGoogle Scholar
  10. 10.
    R. M. Solovay,A model of set theory in which every set of reals is Lesbesgue measurable, to appear.Google Scholar
  11. 11.
    K. Kuratowski,Topology, Academic Press 1966, Vol I, III, § 36, V (p. 444).Google Scholar
  12. 12.
    Colloq. Math.1 (1947), 57.Google Scholar

Copyright information

© Hebrew University 1971

Authors and Affiliations

  • Gadi Moran

There are no affiliations available

Personalised recommendations