Annals of Biomedical Engineering

, Volume 24, Supplement 1, pp 139–147 | Cite as

Three-dimensional reconstruction of the flow in a human left heart by using magnetic resonance phase velocity encoding

  • Peter G. Walker
  • Gregory B. Cranney
  • Randall Y. Grimes
  • Jason Delatore
  • Joseph Rectenwald
  • Gerald M. Pohost
  • Ajit P. Yoganathan
Methodological and Technical Reports

Abstract

Intraventricular flows have been correlated with disease and are of interest to cardiologists as a possible means of diagnosis. This study extends a method that use magnetic resonance (MR) to measure the three-dimensional nature of these flows. Four coplanar sagittal MR slices were located that spanned the left ventricle of a healthy human. All three velocity components were measured in each slice and 18 phases were obtained per beat. With use of the MR magnitude images, masks were created to isolate the velocity data within the heart. These data were read into the software package. Data Visualizer, and the data from the four slices were aligned so as to reconstruct the three-dimensional volume of the left ventricle and atrium. By representing the velocity in vectorial form, the three-dimensional intraventricular flow field was visualized. This revealed the presence of one large line vortex in the ventricle during late diastole but a more ordered flow during early diastole and systole. In conclusion, the use of MR velocity acquisition is a suitable method to obtain the complex intraventricular flow fields in humans and may lead to a better understanding of the importance of these flows.

Keywords

Magnetic resonance Computer reconstruction Velocity Left ventricle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Back, L. H., D. G. Gordon, D. C. Ledbetter, R. H. Selzer, and D. W. Crawford. Dynamical relations for left ventricular ejection: Flow rate, momentum, force and impulse.J. Biomech. Eng. 106:54–61, 1984.PubMedCrossRefGoogle Scholar
  2. 2.
    Beppu, S., S. Izumi, K. Miyatake, S. Nagata, Y.-D. Park, H. Sakakibara, and Y. Nimura. Abnormal blood pathways in left ventricular cavity in acute myocardial infarction.Circulation 78(1):157–165, 1987.Google Scholar
  3. 3.
    Bot, H., J. Verburg, B. J. Delemarre, and J. Strackee. Determinants of the occurrence of vortex rings in the left ventricle during diastole.J Biomechanics 23(6):607–615, 1990.CrossRefGoogle Scholar
  4. 4.
    Delemarre, B. J., H. Bot, C. A. Visser, and A. J. Dunning. Pulsed Doppler echocardiographic description of a circular flow pattern in spontaneous left ventricular contrast.J. Am. Soc. Echocardiogr. 1(2):114–118, 1988.PubMedGoogle Scholar
  5. 5.
    Delemarre, B. J., C. A. Visser, H. Bot, and A. J. Dunning. Prediction of apical thrombus formation in acute myocardial infarction based on left ventricular spatial flow pattern.J. Am. Coll Cardiol. 15(2):355–360, 1990.PubMedGoogle Scholar
  6. 6.
    Delemarre, B. J., C. A. Visser, H. Bot, H. J. D. Koning, and A. J. Dunning. Predictive value of pulsed Doppler echocardiography in acute myocardial infarction.J. Am. Soc. Echocardiogr. 2(2):102–109, 1989.PubMedGoogle Scholar
  7. 7.
    Firmin, D., G. L. Naylor, R. H. Klipstein, S. R. Underweed, R. S. O. Rees, and D. B. Longmore.In-vivo validation of MR velocity imaging.J. Comp. Assist. Tomgr. 11(5):751–756, 1987.CrossRefGoogle Scholar
  8. 8.
    Garrahy, P. J., O. L. Kwan, D. C. Booth, and A. N. DeMaria. Assessment of abnormal systolic intraventricular flow patterns by Doppler imaging in patients with left ventricular dyssynergy.Circulation 82(1):95–104, 1990.PubMedGoogle Scholar
  9. 9.
    Georgiadis, J. G., M. Wang, and A. Pasipoularides. Computational fluid dynamics of left ventricular ejection.Ann. Biomed. Eng. 20:81–97, 1992.PubMedCrossRefGoogle Scholar
  10. 10.
    Jacobs, L. E., M. N. Kotler, and W. R. Parry. Flow patterns in dilated cardiomyopathy: a pulsed-wave and color flow Doppler study.J. Am. Soc. Echocardiogr. 3(4):294–302, 1990.PubMedGoogle Scholar
  11. 11.
    Lanzer, P., W. McKibbin, D. Bohning, B. Thorn, G. Gross, G. Cranney, N. Nada, and G. Pohost. Aortic iliac imaging by projection phase sensitive MR angiography: effects of triggering and timing of data acquisition on image quality.Magn. Reson. Imaging 8:107–116, 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Matsuda, R., K. Shimizu, T. Sakurai, A. Fujita, H. Ohara, S. Okamura, S. Hashimoto, S. Tamaki, and C. Kawai. Measurement of aortic blood flow with MR imaging: comparative study with Doppler US.Radiology 162:857–861, 1987.PubMedGoogle Scholar
  13. 13.
    McQueen, D. M., and C. S. Peskin. A three-dimensional computational method for blood flow in the heart.J. Comput. Phys. 81(2):372–395, 1989.CrossRefGoogle Scholar
  14. 14.
    Meier, D., S. Maier, and P. Boesiger. Quantitative flow measurements on phantoms and on blood vessels with MR.Magn. Reson. Med. 8:25–34, 1988.PubMedCrossRefGoogle Scholar
  15. 15.
    Mikell, F. L., R. W. Asinger, K. J. Elsperger, W. R. Anderson, and M. Hodges. Regional stasis of blood in the dysfunctional left ventricle: echocardiographic detection and differentiation from early thrombosis.Circulation 66(4): 755–763, 1982.PubMedGoogle Scholar
  16. 16.
    Morvan, D., F. Cassot, and R. Pelissier. Simulation numerique do l'ecoulement intraventriculaire par une methode particulaire J. Mecanique Theorique Appliquee 6(4):489–509, 1987.Google Scholar
  17. 17.
    Pelle, G., J. Ohayon, and C. Oddou. Trends in cardiac dynamics: towards coupled models of intracavity fluid dynamics and deformable wall mechanics.J. Physics III 4: 1121–1127, 1994.Google Scholar
  18. 18.
    Peskin, C. S., and D. M. McQueen. Modeling prosthetic heart valves for numerical analysis of blood flow in the heart.J. Comput. Phys. 37(1):113–132, 1980.CrossRefGoogle Scholar
  19. 19.
    Ridgeway, J. P., and M. A. Smith. A technique for velocity imaging using magnetic resonance imaging.Br. J. Radiol. 59:603–607, 1986.Google Scholar
  20. 20.
    Schoephoerster, R. T., C. L. Silva, and G. Ray. Finite analytic model for left ventricular systolic flow dynamics.J. Eng. Mech. 119(4):733–747, 1993.CrossRefGoogle Scholar
  21. 21.
    Schoephoerster, R. T., C. L. Silva, and G. Ray. Evaluation of left ventricular function based on simulated systolic flow dynamics computed from regional wall motion.J. Biomech. 27(2):125–136, 1994.PubMedCrossRefGoogle Scholar
  22. 22.
    Stugaard, M., O. A. Smiseth, C. Risoe, and H. Ihlen. Intraventricular early diastolic filling during acute myocardial ischemia: assessment by multigated color M-mode Doppler echocardiography.Circulation 88(6):2705–2713, 1993.PubMedGoogle Scholar
  23. 23.
    Sun, Y., D. O. Hearshen, G. W. Rankin, and A. M. Haggar. Comparison of velocity-encoded MR imaging and fluid dynamic modeling of staedy and disturbed flow.J. Magn. Reson. Imaging 2:443–452, 1992.PubMedCrossRefGoogle Scholar
  24. 24.
    Taylor, T. W., H. Okino, and T. Yamaguchi. Three-dimensional analysis of left ventricular ejection using computational fluid dynamics.J. Biomech. Eng. 116:127–130, 1994.PubMedGoogle Scholar
  25. 25.
    Walker, P. G., G. B. Cranney, M. B. Scheidegger, G. Waseleski, G. M. Pohost, and A. P. Yoganathan. A semiautomated method for noise reduction and background phase error correction in NMR phase velocity data.J. Magn. Reson. Imaging 3:521–530, 1993.PubMedCrossRefGoogle Scholar
  26. 26.
    Walker, P. G., S. Oyre, E. M. Pedersen, A. P. Yoganthan. The accuracy of MR phase encoding measurements downstream of a mechanical heart valve: a comparison with LDA (Abstract). 12th Annual Meeting, Society of Magnetic Resonance Imaging, New York, 1993.Google Scholar
  27. 27.
    Walker, P. G., E. M. Pedersen, S. Oyre, L. Flepp, S. Ringgaard, R. S. Heinrich, S. P. Walton, J. M., Hasenkam, H. S. Jorgensen, and A. P. Yoganathan. Magnetic resonance velocity imaging: a new method for prosthetic heart valve study.J. Heart Valve Dis. 4:296–307, 1995.PubMedGoogle Scholar
  28. 28.
    Yoganathan, A. P., J. D. Lemmon, Y. H. Kim, P. G. Walker, R. A. Levine, and C. C. Vesier. A computational study of a thin-walled 3D left ventricle during early systole.J Biomech. Eng. 116:307–314, 1994.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 1995

Authors and Affiliations

  • Peter G. Walker
    • 3
  • Gregory B. Cranney
    • 1
  • Randall Y. Grimes
    • 3
  • Jason Delatore
    • 3
  • Joseph Rectenwald
    • 3
  • Gerald M. Pohost
    • 2
  • Ajit P. Yoganathan
    • 3
  1. 1.Department of CardiologyPrince Henry HospitalLittle BayAustralia
  2. 2.Division of Cardiovascular Disease, Center for NMR Research and DevelopmentUniversity of Alabama at BriminghamBirmingham
  3. 3.School of Chemical EngineeringGeorgia Institute of TechnologyAtlanta

Personalised recommendations