, Volume 42, Issue 1–2, pp 13–20

Ladybirds as a model system for the study of male-killing symbionts

  • M. E. N. Majerus
  • G. D. D. Hurst


Maternally inherited bacteria that kill male but not female hosts during embryogenesis occur in a number of aphidophagous coccinellids. Work on EnglishAdalia bipunctata (L.), has shown the causative agent of male-killing to be a member of the bacterial genusRickettsia. In coccinellids, the primary advantage of male-killing behaviour to the bacterium has been identified. Following male death, resource reallocation occurs through sibling egg cannibalism: female neonate larvae of infected mothers gain a significant survival advantage by eating the soma of their dead male siblings. In addition, daughters of infected females suffer a reduced risk of cannibalism as a result of the lower egg hatch rate in infected clutches.

Predictions as to which species of coccinellid are liable to harbour male-killers may be made on the basis of the selective advantages of male-killing identified inA. bipunctata. Species which may harbour male-killers are likely to lay eggs in clutches, show sibling egg cannibalism, and exhibit high neonate mortality.

Recent work has shown male-killing to occur in a number of other aphidophagous coccinellids with the predicted characteristics. Molecular genetic analysis has putatively identified three bacterial symbionts associated with male-killing, coming from three phylogenetically distant bacterial taxa. We therefore suggest that within coccinellids that possess these features, male-killing may evolve in a taxonomically diverse range of inherited bacteria.

The implications of the presence of male-killing bacteria on the population demography of host coccinellids, and on host mitochondrial DNA variability are discussed. The aphidophagous coccinellids are proposed as a model system for studying the evolution and consequences of infection with male-killers.


Coccinellidae female-biased sex ratio cytoplasmic bacteria male killing sibling egg cannibalism mitochondrial DNA 

Les coccinelles en tant que modèle de l’étude des symbiontes tueurs de mâles


Il existe des bactéries transmises maternellement et qui tuent leurs hôtes mâles mais pas leurs hôtes femelles au cours de l’embryogénèse dans de nombreuses coccinelles aphidiphages. Un travail surAdalia bipunctata (L.) a montré que l’agent responsable de cette élimination des mâles était unRickettsia. Chez les coccinelles, on a trouvé l’avantage de base de l’élimination des mâles par les bactéries. Suite à la mort du mâle, la redistribution des ressources a lieu par le cannibalisme des œufs entre membres d’une même ponte : les larves femelles nouvellement écloses des mères infestées obtiennent un avantage significatif en terme de survie en dévorant leurs congénères mâles. En outre, les filles de femelles infestées souffrent d’un risque de cannibalisme réduit, résultat d’un taux d’éclosion des œufs plus bas dans les pontes infestées. La prédiction des espèces de coccinellides susceptibles de comporter des tueuses de mâles peut être faite sur la base des avantages sélectifs d’éliminer le mâle chezA. bipunctata. Les espèces susceptibles de comporter des tueuses de mâles pondent probablement leurs œufs groupés, présentent un cannibalisme entre œufs d’une même ponte et une forte mortalité néonate.

Un travail récent a montré que le comportement d’élimination des mâles existe chez de nombreuses autres coccinelles aphidiphages présentant les caractéristiques que l’on attendait. L’analyse génétique moléculaire a permis de distinguer trois symbiontes bactériens associés à ce phénomène, provenant de trois taxa de bactéries phylogénétiquement éloignés. Nous suggérons donc que parmi les coccinelles qui possèdent ces caractéristiques, l’élimination des mâles peut évoluer dans une gamme taxonomiquement diverse de bactéries transmises maternellement.

Les implications de la présence de bactéries tueuses sur la démographie des coccinelles hôtes et sur la variabilité de l’ADN mitochondrial de l’hôte sont discutées. Les coccinelles aphidiphages sont proposées comme modèle pour l’étude de l’évolution et les conséquences de l’infection par des bactéries tueuses de mâles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balayeva, N. M., Eremeeva, M. E., Tissot-Dupont, H., Zakharov, I. A. &Raoult, D. — 1995. Genotype characterization of the bacterium expressing the male-killing trait in the ladybird beetleAdalia bipunctata with specific Rickettsial molecular tools. —Appl. Env. Micro., 61, 1431–1437.Google Scholar
  2. Banks, C. J. — 1955. An ecological study of Coccinellidae associated withAphis fabae onV. faba. —Bull. Ent. Res., 46, 561–587.CrossRefGoogle Scholar
  3. Banks, C. J. — 1956. The distribution of coccinellid egg batches and larvae in relation to numbers ofAphis fabae onVicia faba. —Bull. Ent. Res., 47, 47–56.Google Scholar
  4. Dixon, A. F. G. — 1970. Factors limiting the effectiveness of the coccinellid beetleAdalia bipunctata (L.) as a predator of the sycamore aphid,Drepanosiphum platanoides (Schr.). —J. Anim. Ecol., 39, 739–751.CrossRefGoogle Scholar
  5. Gotoh, T. — 1982. Experimental transfer of abnormal “Sex-Ratio” in the Lady-bird beetle,Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). —Appl. Ent. Zool., 17, 319–324.Google Scholar
  6. Hu, K. — 1979. Maternally inherited “sonless” abnormal SR condition in the ladybeetleHarmonia axyridis. —Acta Genetica Sinica, 6, 296–304.Google Scholar
  7. Hurst, G. D. D., Hammarton, T. C., Obrycki, J. J., Majerus, T. M. O., Walker, L. E., Bertrand, D. &Majerus, M. E. N. — 1996a. Male-killing bacteria in a fifth ladybird beetle,Coleomegilla maculata (Coleoptera: Coccinellidae). —Heredity, 77, 177–185.PubMedGoogle Scholar
  8. Hurst, G. D. D., Hurst, L. D. &Majerus, M. E. N. — 1996b. Cytoplasmic sex ratio distorters. Influential passengers: microbes and invertebrate reproduction, InS. L. O’Neill.A. A. Hoffmann &J. H. Werren (eds) O.U.P., Oxford, U.K.Google Scholar
  9. Hurst, G. D. D. &Majerus, M. E. N. — 1993. Why do maternally inherited microorganisms kill males? —Heredity, 71, 81–95.Google Scholar
  10. Hurst, G. D. D., Majerus, M. E. N. &Walker, L. E. — 1992. Cytoplasmic male killing elements inAdalia bipunctata (Linnaeus) (Coleoptera: Coccinellidae). —Heredity, 69, 84–91.Google Scholar
  11. Hurst, G. D. D., Majerus, M. E. N. &Walker, L. E. — 1993. The importance of cytoplasmic male killing elements in natural populations of the two spot ladybird,Adalia bipunctata (Linnaeus) (Coleoptera: Coccinellidae). —Biol. J. Linn. Soc., 49, 195–202.CrossRefGoogle Scholar
  12. Hurst, G. D. D., Purvis, E. L., Sloggett, J. J. &Majerus, M. E. N. — 1994, The effect of infection with male-killingRickettsia on the demography of femaleAdalia bipunctata L. (two spot ladybird). —Heredity, 73, 309–316.Google Scholar
  13. Hurst, G. D. D., Walker, L. E. &Majerus, M. E. N. — 1997. Bacterial infections of hemocytes associated with the maternally inherited male-killing trait in British populations of the two spot ladybird,Adalia bipunctata. —J. Invert. Path., 68, 286–292.CrossRefGoogle Scholar
  14. Hurst, L. D. — 1991. The incidences and evolution of cytoplasmic male killers. —Proc. R. Soc. Lond. B, 244, 91–99.CrossRefGoogle Scholar
  15. Johnstone, R. A.Hurst, G. D. D. — 1996. Maternally inherited male-killing microorganisms may confound interpretation of mtDNA variation in insects. —Biol. J. Linn. Soc., 58, 453–470.CrossRefGoogle Scholar
  16. Lus, Y. Y. — 1947a. Some aspects of the population increase inAdalia bipunctata 2. The strains without males. —Dokl. Akad. Nauk SSSR, 57, 951–954.Google Scholar
  17. Lus, Y. Y. — 1947b. Some rules of reproduction in populations ofAdalia bipunctata: heterozygosity of lethal alleles in populations. —Dokl. Akad. Nauk SSSR, 57, 825–828.Google Scholar
  18. Majerus, M. E. N. — 1994. Ladybirds (No. 81 New Naturalist Series). —Harper Collins, London.Google Scholar
  19. Matsuka, M., Hashi, H. &Okada, I. — 1975. Abnormal sex-ratio found in the lady beetle,Harmonia axyridis Pallas (Coleoptera: Coccinellidae). —Appl. Ent. Zool., 10, 84–89.Google Scholar
  20. Niijima, K. — 1983. Experimental transfer of abnormal sex ratio in two ladybird species. —Bull. Fac. Agric. Tamagawa Univ., 23, 11–17.Google Scholar
  21. Niijima, K. &Nakajima, K. — 1981. Abnormal sex ratio inMenochilius sexmaculatus (Faricius).Bull. Fac. Agric. Tamagawa Univ., 21, 59–67.Google Scholar
  22. Shull, H. F. — 1948. An all-female strain of lady beetles with reversion to normal sex ratios. —Am. Nat., 82, 241–251.CrossRefGoogle Scholar
  23. Werren, J. H., Hurst, G. D. D., Zhang, W., Breeuwer, J. A. J., Stouthamer, R. &Majerus, M. E. N. — 1994. Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). —J. Bacteriol., 176, 388–394.PubMedGoogle Scholar
  24. Wratten, S. D. — 1973. The effectiveness of the coccinellid beetle,Adalia bipunctata (L.) as a predator of the lime aphid,Eucallipterua tiliae L. —J. Anim. Ecol., 42, 785–802.CrossRefGoogle Scholar
  25. Wratten, S. D. — 1976. Searching byAdalia bipunctata (L.) (Coleoptera: Coccinellidae) and escape behaviour of its aphid and ciccadellid prey on lime (Tilia xvulgaris Hayne). —Ecol. Entomol., 1, 139–142.Google Scholar
  26. Zakharov, I. A., Hurst, G. D. D., Majerus, M. E. N. & Chersheva, N. — 1996. Male-killing in the St. Petersburg population ofAdalia bipunctata is not caused by aRickettsia. —Russ. J. Genet., In press.Google Scholar

Copyright information

© Lavoisier Abonnements 1997

Authors and Affiliations

  • M. E. N. Majerus
    • 1
  • G. D. D. Hurst
    • 1
  1. 1.Department of GeneticsUniversity of CambridgeCambridgeU.K.

Personalised recommendations