Molecular Neurobiology

, Volume 7, Issue 3–4, pp 293–334 | Cite as

Receptor-receptor interactions as an integrative mechanism in nerve cells

  • Michele Zoli
  • Luigi F. Agnati
  • Peter B. Hedlund
  • Xi Ming Li
  • Sergi Ferré
  • Kjell Fuxe


Several lines of evidence indicate that interactions among transmission lines can take place at the level of the cell membrane via interactions among macromolecules, integral or associated to the cell membrane, involved in signal recognition and transduction. The present view will focus on this last subject, i.e., on the interactions between receptors for chemical signals at the level of the neuronal membrane (receptor-receptor interaction). By receptor-receptor interaction we mean that a neurotransmitter or modulator, by binding to its receptor, modifies the characteristics of the receptor for another transmitter or modulator. Four types of interactions among transmission lines may be considered, but mainly intramembrane receptor-receptor interactions have been dealt with in this article, exemplified by the heteroregulation of D2 receptors via neuropeptide receptors and A2 receptors. The role of receptor-receptor interactions in the integration of signals is discussed, especially in terms of filtration of incoming signals, of integration of coincident signals, and of neuronal plasticity.

Index Entries

Transmitter receptor transmission line heteroregulation homoregulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi D. K., Kalivas P. W., and Schenk J. O. (1990) Neurotensin binding to dopamine.J. Neurochem. 54, 1321–1328.PubMedCrossRefGoogle Scholar
  2. Agnati L. F., Fuxe K., Zini I., Lenzi P., and Hökfelt T. (1980) Aspects on receptor regulation and isoreceptor identification.Med. Biol. 58, 182–187.PubMedGoogle Scholar
  3. Agnati L. F., Fuxe K., Zoli M., Rondanini C., and Ögren S.-O. (1982) New vistas on synaptic plasticity: mosaic hypothesis on the engram.Med. Biol. 60, 183–190.PubMedGoogle Scholar
  4. Agnati L. F. and Fuxe K. (1983) Subcortical limbic [3H]N-propylnorapomorphine binding sites are markedly modulated by cholecystokinin-8 in vitro.Biosci. Rep. 3, 1101–1105.PubMedCrossRefGoogle Scholar
  5. Agnati L. F., Fuxe K., Benfenati F., Celani M. F., Battistini N., Mutt V., Cavicchioli L., Galli G., and Hökfelt T. (1983a) Differential modulation by CCK-8 and CCK-4 of [3H]spiperone binding sites linked to dopamine and 5-hydroxytryptamine receptors in the brain of the rat.Neurosci. Lett. 35, 179–183.PubMedCrossRefGoogle Scholar
  6. Agnati L. F., Celani M. F., and Fuxe K. (1983b) Cholecystokinin peptides in vitro modulate the characteristics of striatal [3H]N-propylnorapomorphine binding sites.Acta Physiol. Scand. 118, 79–81.PubMedGoogle Scholar
  7. Agnati L. F., Fuxe K., Benfenati F., and Battistini N. (1983c) Neurotensin in vitro markedly reduces the affinity in subcortical limbic [3H]N-propylnorapomorphine binding sites.Acta Physiol. Scand. 119, 459–461.PubMedGoogle Scholar
  8. Agnati L. F., Fuxe K., Benfenati F., Zini I., and Hökfelt T. (1983d) On the functional role of coexistence of 5-HT and substance P in bulbospinal 5-HT neurons. Substance P reduces affinity and increases density of [3H]5-HT binding sites.Acta Physiol. Scand. 117, 299–301.PubMedGoogle Scholar
  9. Agnati L. F., Fuxe K., Benfenati F., Battistini N., Härfstrand A., Tatemoto K., Hökfelt T., and Mutt V. (1983e) Neuropeptide Y in vitro selectively increases the number of a2-adrenergic binding sites in membranes of the medulla oblongata of the rat.Acta Physiol. Scand. 118, 293–295.PubMedCrossRefGoogle Scholar
  10. Agnati L. F., Fuxe K., Benfenati F., Battistini N., Zini I., Camurri M., and Hökfelt T. (1984) Postsynaptic effects of neuropeptide comodulators at central monoamine synapses, inNeurology and Neurobiology, vol. 8B: Cathecolamines, Part B: Neuropharmacology and Central Nervous System Theoretical Aspects (Usdin E., Carlsson A., Dahlström A., and Engel J., eds.), Liss, New York, p. 191.Google Scholar
  11. Agnati L. F., Fuxe K., Battistini N., Giardino L., Benfenati F., Martire M., and Ruggeri M. (1985a) Further evidence for the existence of interactions between receptors for dopamine and neurotensin. Dopamine reduces the affinity and increasses the number of [3H]neurotensin binding sites in the subcortical limbic forebrain in the rat.Acta Physiol. Scand. 124, 125–128.PubMedGoogle Scholar
  12. Agnati L. F., Fuxe K., Giardino L., Calza L., Calza L., Zoli M., Battistini N., Benfenati F., Vanderhaeghen J. J., Guidolin D., Ruggeri M., and Goldstein M. (1985b) Evidence for cholecystokinin-dopamine receptor interactions in the central nervous system of the adult and old rat.Ann. NY Acad. Sci. 448, 315–333.PubMedCrossRefGoogle Scholar
  13. Agnati L. F., Fuxe K., Zoli M., Merlo P., Benfenati F., Zini I., and Goldstein M. (1986) Aspects on the information handling by the central nervous system: focus on cotransmission in the aged brain, inProgress in Brain Research vol. 68, Hökfelt T., Fuxe K., and Pernow B., eds.), Elsevier, Amsterdam, pp. 291–301.Google Scholar
  14. Agnati L. F., Fuxe K., Merlo-Pich E., Zoli M., Zini I., Benfenati F., Härfstrand A., and Goldstein M. (1987) Aspects on the integrative capabilities of the central nervous system: evidence for “volume transmission” and its possible relevance for receptor-receptor interactions inReceptor-Receptor Interactions (Fuxe K. and Agnati L. F., eds.), Macmillan, London, pp. 236–249.Google Scholar
  15. Agnati L. F., Zoli M., Merlo-Pich E., Ruggeri M., and Fuxe K. (1988) The emerging complexity of the brain. Limits of brain-computer analogy, inTraffic Engineering for ISDN Design and Planning (Bonatti M. and Decina M., eds.), Elsevier, Amsterdam, pp. 209–230.Google Scholar
  16. Agnati L. F., Zoli M., Pich E. M., Benfenati F., Grimaldi R., Zini I., Toffano G., and Fuxe K. (1989) NPY receptors and their interactions with other transmitter systems, inNeuropeptide Y (Mutt V., Fuxe K., Hökfelt T., and Lundberg J., eds.), Raven, New York, pp. 103–114.Google Scholar
  17. Agnati L. F., Zoli M., Merlo-Pich E., Benfenati F., and Fuxe K. (1990) Aspects of neural plasticity in the central nervous system. VII. Theoretical aspects of brain communication and computation.Neurochem. Int. 16, 478–500.Google Scholar
  18. Agnati L. F., Bjelke B., and Fuxe K. (1992) Volume transmission in the brain.Am. Sci. 80, 362–373.Google Scholar
  19. Aguirre J. A., Fuxe K., Agnati L. F., and von Euler G. (1990) Centrally injected neuropeptide Y (13–36) produces vasopressor effects and antagonizes the vasodepressor action of neuropeptide Y (1–36) in the awake male rat.Neurosci. Lett. 118, 5–8.PubMedCrossRefGoogle Scholar
  20. Aguirre J. A., Fuxe K., Hedlund P., Narváez J. A. Cintra A., Rosén L., and Fuxe K. (1991) Neuropeptide Y/angiotensin II interactions in central cardiovascular regulation of the rat.Brain Res. 566, 61–69.PubMedCrossRefGoogle Scholar
  21. Alexander S. P. and Reddington M. (1989) The cellular localization of adenosine receptors in rat neostriatum.Neuroscience 28, 645–651.PubMedCrossRefGoogle Scholar
  22. Ariéns E. J., Beld A. J., Rodrigues de Miranda J. F., and Simonis A. M. (1980) The pharmacon-receptor-effector concept. A basis for understanding the transmission information in biological systems, inThe Receptors: A Comprehensive Treatise, vol. 1 (O'Brien R. D., ed.), Plenum, New York, pp. 33–91.Google Scholar
  23. Assaf S. Y. and Chung S. (1984) Release of endogenous Zn2+ from brain tissue during activity.Nature 308, 734–736.PubMedCrossRefGoogle Scholar
  24. Axelrod J., Burch R. M., and Jelsema C. L. (1987) Receptor mediated activation of phospholipase A2: arachidonic acid and its metabolites as second messengers inReceptor-Receptor Interactions (Fuxe K. and Agnati L. F., eds.), Macmillan, London, pp. 298–307.Google Scholar
  25. Barbaccia M. L., Costa E., and Guidotti A. (1988) Endogenous ligands for high-affinity recognition sites of psychotropic drugs.Ann. Rev. Pharmacol. Toxicol. 28, 451–476.CrossRefGoogle Scholar
  26. Barraco R. A., Aggarwal A. K., Phillis J. W., Boron M. A., and Wu P. (1984) Dissociation of the locomotor and hypotensive effects of adenosine analogues in the rat.Neurosci. Lett. 48, 139–144.PubMedCrossRefGoogle Scholar
  27. Bean A. J., Adrian T. E., Modline I. M., and Roth R. H. (1989) Storage of dopamine and neurotensin in colocalized and noncolocalized neuronal populations.J. Pharmacol. Exp. Ther. 249, 681–684.PubMedGoogle Scholar
  28. Bear M. F. and Kirkwood A. (1993) Neocortical longterm potentiation.Curr. Opin. Neurobiol. 3, 197–202.PubMedCrossRefGoogle Scholar
  29. Benovic J. L., Regan J. W., Caron M. G., and Lefkowitz R. J. (1987a) Agonist-dependent phosphorylation of the a2-adrenergic receptor by the b-adrenergic receptor kinase.J. Biol. Chem. 262, 17,251–17,253.Google Scholar
  30. Benovic J. L., Staniszewski C., Cerione R. A., Codina J., Lefkowitz R. J., and Caron M. G. (1987b) The mammalian beta-adrenergic receptor: structural and functional characterization of the carbohydrate moiety.J. Recept. Res. 7, 257–281.PubMedGoogle Scholar
  31. Benovic J. A., Bechtel P. J., and Krebs E. G. (1988) Regulation of adenylyl cyclase-coupled b-adrenergic receptor.Ann. Rev. Cell Biol. 4, 405–428.PubMedGoogle Scholar
  32. Benveniste M., Clements J., and Mayer M. (1990) A kinetic analysis of the modulation of NMDA receptors by clycine in mouse cultured hippocampal neurons.J. Physiol. 428, 333–357.PubMedGoogle Scholar
  33. Bertorello A. M., Hopfield J. F., Aperia A., and Greengard P. (1990) Inhibition of dopamine of (NA+K+) ATPase activity in neostriatal neurons through D1 and D2 dopamine synergism.Nature 347, 386–388.PubMedCrossRefGoogle Scholar
  34. Boissier J. R. and Simon P. (1965) Action de la caffeine sur la motilitée spontanée de la souris.Arch. Int. Pharmacodyn. Ther. 158, 212–221.PubMedGoogle Scholar
  35. Bormann J., Flugge G., and Fuchs E. (1989) Effect of atrial natriuretic factor (ANF) on nicotinic acetylcholine receptor channels in bovine chromaffin cells.Pflugers Arch. Eur. J. Physiol. 414, 11–14.CrossRefGoogle Scholar
  36. Bourne H. R. and Nicoll R. (1993) Molecular machines integrate coincident synaptic signals.Cell 72/Neuron 10 (Suppl.), 65–75.CrossRefGoogle Scholar
  37. Bouthenet M. L., Souil E., Martres M., Sokolof P., Giros B., and Schwartz J. C. (1992) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor.Brain Res. 564, 203–219.CrossRefGoogle Scholar
  38. Boyd N. D. and Leeman S. E. (1987) Multiple actions of substance P that regulate the functional properties of acetylcholine receptors of clonal rat PC12 cells.J. Physiol. 389, 69–97.PubMedGoogle Scholar
  39. Boyson S. J., McConigle P., and Scatton P. B. (1986) Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain.J. Neurosci. 6, 3177–3182.PubMedGoogle Scholar
  40. Brown A. M. and Birnbaumer L. (1990) Ionic channels and their regulation by G protein subunits.Ann. Rev. Physiol. 52, 197–213.CrossRefGoogle Scholar
  41. Brown S. J., Gill R., Evenden J. I., Iversen S. D., and Richardson P. J. (1991) Striatal A2 receptor regulates apomorphine-induced tuning in rats with unilateral dopamine denervation.Psychopharmacology 103, 78–82.PubMedCrossRefGoogle Scholar
  42. Bruns R. F., Lu G. H., and Pugsley T. A. (1986) Characterization of the A2 adenosine receptor labeled by3H-NECA in rat striatal membranes.Mol. Pharmacol. 29, 331–346.PubMedGoogle Scholar
  43. Bruns R. F., Davis R. E., Ninteman F. W., Poschel B.P.H., Wiley J. N., and Hefner T. G. (1988) Adenosine antagonists as pharmacological tools inAdenosine and Adenine Nucleotides: Physiology and Pharmacology (Paton D. M., ed.), Taylor and Francis, Basingstoke, UK, pp. 39–49.Google Scholar
  44. Bunzow J. R., Van Tol H. H. M., Grandy D. K., Albert P., Salón J., Christie M. C., Machida C. A., Neve K. A., and Civelli O. (1988) Cloning and expression of a rat D2 dopamine receptor cDNA.Nature 336, 783–787.PubMedCrossRefGoogle Scholar
  45. Cain S. T., Abramson M., and Nemeroff C. B. (1988) Neurotensin stimulates the phosphorylation of caudate nucleus synaptosomal proteins.Ann. NY Acad. Sci. 537, 488–490.CrossRefGoogle Scholar
  46. Changeux J. P. (1990) Functional architecture and dynamic of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel, inFidia Research Foundation Neuroscience Award Lectures (Changeux J.-P., Llinás R. R., Purves D., and Bloom F. E., eds.), Raven, New York, pp. 21–168.Google Scholar
  47. Clagett-Dame M. and McKelvy J. F. (1989) N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity.Arch. Biochem. Biophys. 274, 145–154.PubMedCrossRefGoogle Scholar
  48. Clark, D. and White F. J. (1987) D1 dopamine receptor—the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and functional implications.Synapse 1, 347–388.PubMedCrossRefGoogle Scholar
  49. Coffin V. L. and Carney J. M. (1986) Effects of selected analogs of adenosine on schedule controlled behavior in rats.Neuropharmacology 25, 1141–1147.PubMedCrossRefGoogle Scholar
  50. Colley P. A. and Routtenberg A. (1993) Long-term potentiation as synaptic dialogue.Brain Res. Rev. 18, 115–122.PubMedCrossRefGoogle Scholar
  51. Conn P. M., Rogers D. C., Stewart J. M., Niedel J., and Sheffield T. (1982) Conversion of a gonadotropin-releasing hormone antagonist to an agonist.Nature 296, 653–655.PubMedCrossRefGoogle Scholar
  52. Convents A., De Backer J. P., Van Driessche E., Convents, D., Beeckmans, S., and Vauquelin G. (1988) Glycoprotein nature of alpha 2-adrenergic receptors labeled with p-azido:3H: clonidine in calf retina membranes.FEBS Lett. 234, 480–484.PubMedCrossRefGoogle Scholar
  53. Costa E., Guidotti A., and Mao C. C. (1975) Evidence for involvement of GABA in the action of benzodiazepines: studies on rat cerebellum inMechanism of Action of Benzodiazepines (Costa E. and Greengard P., eds.), Raven, New York, pp. 113–130.Google Scholar
  54. Cote T. E., Felder R., Kebabian J. W., Sekura R. D., Reisine T., and Affolter H.-U. (1986) D-2 dopamine receptor mediated inhibition of proopiomelanocortin synthesis in rat intermediate lobe.J. Biol. Chem. 261, 4555–4561.PubMedGoogle Scholar
  55. Crawley J. N. (1989) Microinjection of cholecystokinin into the rat ventral tegmental area potentiates dopamine-induced hypolocomotion.Synapse 3, 346–355.PubMedCrossRefGoogle Scholar
  56. Creese I., Burt D. R., and Snyder S. H. (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioural supersensitivity.Science 197, 596–598.PubMedCrossRefGoogle Scholar
  57. D'Angelo E., Rossi P., and Garthwaite J. (1990) Dualcomponent NMDA receptor currents at a single central synapse.Nature 346, 467–470.PubMedCrossRefGoogle Scholar
  58. Daly J. W., Butts-Lamb P., and Padgett W. (1983) Subclasses of adenosine receptors in the central nervous system. Interactions with caffeine and related methylxanthines.Cell. Mol. Neurobiol. 1, 69–80.CrossRefGoogle Scholar
  59. Danysz W., Fadda E., Wroblewski J. T., and Costa E. (1989) Different modes of action of 3-amino-1-hydroxy-2-pyrrolidone (HA-966) and 7-chlorokynurenic acid in the modulation of NMDA-sensitive glutamate receptors.Mol. Pharmacol. 36, 912–916.PubMedGoogle Scholar
  60. Desiderio M. A., Zini I., Davalli P., Zoli M., Corti A., Fuxe K., and Agnati L. F. (1988) Polyamines, ornithine decarboxylase, and diamine oxidase in the substantia nigra and striatum of the male rat after hemitransection.J. Neurochem. 51, 25–31.PubMedCrossRefGoogle Scholar
  61. Ding X. Z. and Mocchetti I. (1992) Dopaminergic regulation of cholecystokinin mRNA content in rat striatum.Mol. Brain Res. 12, 77–83.PubMedCrossRefGoogle Scholar
  62. Dobner P. R., Barber D. L., Villa-Komaroff, L., and McKiernan C. (1987) Cloning and sequence analysis of cDNA for the canine neurotensin/neuromedin N precursor.Proc. Natl. Acad. Sci. USA 84, 3516–3520.PubMedCrossRefGoogle Scholar
  63. Dumbrill-Ross A. and Seeman P. (1984) Dopamine receptor elevation by cholecystokinin.Peptides 5, 1207–1212.CrossRefGoogle Scholar
  64. Dunwiddie T. V. (1985) The physiological role of adenosine in the central nervous system.Int. Rev. Neurobiol. 27, 63–139.PubMedGoogle Scholar
  65. Durcan M. J. and Morgan D. F. (1989a) Evidence for adenosine A2 receptor involvement in the hypomobility effects of adenosine analogues in mice.Eur. J. Pharmacol. 168, 285–288.PubMedCrossRefGoogle Scholar
  66. Durcan M. J. and Morgan D. F. (1989b) NECA-induced hypomotility in mice: evidence for a predominantly central site of action.Pharmacol. Biochem. Behav. 32, 487–491.PubMedCrossRefGoogle Scholar
  67. Elazar Z. and Fuchs S. (1991) Phosphorylation by cAMP-dependent protein kinase modulates agonist binding to the D2 dopamine receptor.J. Neurochem. 56, 75–80.PubMedCrossRefGoogle Scholar
  68. Erinoff L. and Snoddgrass S. R. (1986) Effects of adult or neonatal treatment with 6-hydroxydopamine or 5,7 dihydroxytryptamine on locomotor activity monoamine levels and response to caffeine.Pharmacol. Biochem. Behav. 24, 1039–1043.PubMedCrossRefGoogle Scholar
  69. Federman A. D., Conklin B. R., Reed R. R., and Bourne H. R. (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein beta gamma subunits.Nature 356, 159–161. (1991a) Postsynaptic dopamine/adenosine interaction: I. Adenosine analogues inhibit a D2 mediated behaviour in short-term reserpinized mice.Eur. J. Pharmacol. 192, 30–35.PubMedCrossRefGoogle Scholar
  70. Ferré S., Herrera-Marschitz M., Gabrowska-Andén M., Casas M., Ungerstedt U., and Andén N.-E. (1991b) Postsynaptic dopamine/adeonosine interaction: II. Dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice.Eur. J. Pharmacol. 192, 36–42.Google Scholar
  71. Ferré S., Rubio A., and Fuxe K. (1991c) Stimulation of adenosine A2 receptors induces catalepsy.Neurosci. Lett. 130, 162–164.PubMedCrossRefGoogle Scholar
  72. Ferré S., von Euler G., Johansson B., Fredholm B. B., and Fuxe K. (1991d) Stimulation of adenosine A2a receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes.Proc. Natl. Acad. Sci. USA 88, 7238–7241.PubMedCrossRefGoogle Scholar
  73. Ferré S. and Fuxe K. (1992) Dopamine denervation leads to an increase in the membrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum.Brain Res. 594, 124–130.PubMedCrossRefGoogle Scholar
  74. Ferré S., Fuxe K., von Euler G., Johansson B., and Fredholm B. (1992) Adenosine-dopamine interactions in the brain.Neuroscience 51, 501–512.PubMedCrossRefGoogle Scholar
  75. Ferré S., Snaprud P., and Fuxe K. (1993) Opposing actions of an adenosine A2 agonist and a GTP analogue on the regulation of dopamine D2 receptors in rat neostriatal membranes.Eur. J. Pharmacol. 244, 311–315.PubMedCrossRefGoogle Scholar
  76. Findlay J. and Eliopoulos E. (1990) Three-dimensional modelling of G protein-linked receptors.Trends Pharmacol. Sci. 11, 492–498.PubMedCrossRefGoogle Scholar
  77. Fink, J. S., Weaver D. R., Rivkees S. A., Peterfreund R. A., Pollack A., Adler E. M. and Reppert S. M. (1992) Molecular cloning of the rat A2 adenosine receptor: selective coexpression with D2 dopamine receptors in rat striatum.Mol. Brain Res. 14, 186–195.PubMedCrossRefGoogle Scholar
  78. Fontaine B., Klarsfeld A., Hökfelt T. and Changeux J. P. (1986) Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes.Neurosci. Lett. 71, 59–65.PubMedCrossRefGoogle Scholar
  79. Fontaine B., Klarsfeld A., and Changeux J. P. (1987) Calcitonin-gene-related peptide and muscle activity regulate acetylcholine receptor a-subunit mRNA levels by distinct intracellular pathways.J. Cell Biol. 105, 1337–1342.PubMedCrossRefGoogle Scholar
  80. Fredholm B. B., Fuxe, K., and Agnati L. F. (1976) Effect of some phosphodiesterase inhibitors onGoogle Scholar
  81. Fredholm B. B. and Hedqvist P. (1979) Modulation of neurotransmission by purine nucleotides and nucleosides.Biochem. Pharmacol. 29, 1635–1643.CrossRefGoogle Scholar
  82. Fredholm B. B., Herrera-Marschitz M., Jonzon B., Lindström K., and Ungerstedt U. (1983) On the mechanism by which methylxanthines enhance apomorphine induced rotation behaviour in the rat.Pharmacol. Biochem. Behav. 19, 535–541.PubMedCrossRefGoogle Scholar
  83. Fredholm B. B. (1985) Adenosine and central cathecholamine neurotransmission, inAdenosine: Receptors and Modulation of Cell Function (Stefanovich V., Rudolphi K., and Schubert P., eds.), IRL, Oxford, pp. 91–104.Google Scholar
  84. Fredholm B. B. (1991) Diversity in receptor signalling: cellular individuality and the search for selective drugs.J. Int. Med. 229, 391–406.Google Scholar
  85. Freidinger R. M., Bock M. G., DiPardo R. M., Evans B. E., Rittle K. E., Whitter W. L., Veber D. F., Anderson P. S., Chang R. S. L., and Lotti V. J. (1990) Development of selective nonpeptide CCK-A and CCK-B/gastrin receptor antagonists, inThe Neuropeptide Cholecystokinin (CCK) (Hughes J., Dockray G., and Woodruff G., eds.). Wiley, New York, pp. 123–132.Google Scholar
  86. Fujita N., Nakahiro M., Fukush I., Sato K., and Yoshida H. (1985) Effects of pertussis toxin on D2 dopamine receptors in rat striatum: evidence for coupling of Ni regulatory protein with D2-receptor.Brain Res. 333, 231–236.PubMedCrossRefGoogle Scholar
  87. Fuxe K. and Ungerstedt U. (1974) Action of caffeine and theophyllamine on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with dopa and dopamine receptor agonists.Med. Biol. 52, 48–54.PubMedGoogle Scholar
  88. Fuxe K., Agnati, L. F., Benfenati F., Cimmino M., Algeri S., and Hökfelt T. (1981a) Modulation by cholecystokinins of [3H]spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites.Acta Physiol. Scand. 113, 567–569.PubMedGoogle Scholar
  89. Fuxe K., Agnati L. F., Köhler C., Kuonen D., Ögren S.-O. Andersson K., and Hökfelt T. (1981b) Characterization of normal and supersensitive dopamine receptors: effects of ergot drugs and neuropeptides.J. Neural. Transm. 51, 3–37.PubMedCrossRefGoogle Scholar
  90. Fuxe K., Agnati L. F., and Celani M. F. (1983a) Evidence for interactions between striatal cholecystokinin and glutamate receptors. CCK-8 in vitro produces a marked downregulation of3H-glutamate binding sites in striatal membranes.Acta Physiol. Scand. 118, 75–77.PubMedGoogle Scholar
  91. Fuxe K., Agnati L. F., and Celani M. F. (1983b) Evidence for interactions between3H-glutamate and3H-kainic acid binding sites in rat striatal membranes. Possible relevance for kainic acid neurotoxicity.Neurosci. Lett. 35, 233–238.PubMedCrossRefGoogle Scholar
  92. Fuxe K., Agnati L. F., Benfenati F., Celani M. F., Zini I., Zoli M., and Mutt V. (1983c) Evidence for the existence of receptor-receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuroleptics.J. Neural Transm. 18, 165–179.Google Scholar
  93. Fuxe K., Agnati L. F., Andersson K., Eneroth P., Härfstrand A., Goldstein M., and Zoli M. (1984a) Studies on neurotensin-catecholamine interactions in the hypothalamus and in the forebrain of the male rat.Neurochem. Int. 6, 737–750.CrossRefGoogle Scholar
  94. Fuxe K., Celani M. F., Martire M., Zini I., Zoli M., and Agnati L. F. (1984b) 1-Glutamate reduces the affinity of 3H-N-propylnorapomorphine binding sites in striatal membranes.Eur. J. Pharmacol. 100, 127–130.PubMedCrossRefGoogle Scholar
  95. Fuxe K. and Agnati L. F. (1985) Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses.Med. Res. Rev. 5, 441–482.PubMedCrossRefGoogle Scholar
  96. Fuxe K., Agnati L. F., Martire M., Neumayer A., Benfenati F., and Frey P. (1986) Studies of neurotensin-dopamine receptor interactions in striatal membranes of the male rat. The influence of 6-hydroxydopamine-induced dopamine receptor supersensitivity.Acta Physiol. Scand. 126, 147–149.PubMedGoogle Scholar
  97. Fuxe K. and Agnati L. F. (1987)Receptor-Receptor Interactions. A New Intramembrane Integrative Mechanism. McMillan, London.Google Scholar
  98. Fuxe K., von Euler G., Agnati L. F., and Ögren S.-O. (1988a) Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex.Neurosci. Lett. 85, 163–167.PubMedCrossRefGoogle Scholar
  99. Fuxe K., von Euler G., and Agnati L. F. (1988b) Angiotensin II reduces the affinity of [3H]paraaminoclonidine binding sites in membrane preparations from the rat dorsomedial medulla oblongata.Acta Physiol. Scand. 134, 317, 318.PubMedGoogle Scholar
  100. Fuxe K., Härfstrand A., Agnati L. F., von Euler G., Svensson T., and Fredholm B. (1989a) On the role of NPY in central cardiovascular regulation, inNeuropeptide Y (Mutt V., ed.), Raven, New York, pp. 201–214.Google Scholar
  101. Fuxe K., Agnati L. F., von Euler G., Benfenati F., Zoli M., Härfstrand A., and Fredholm B. (1989b) Receptor-receptor interactions, and development of psychoactive drugs, inNeurochemical Pharmacology (Costa E., ed.), Raven, New York, pp. 211–227.Google Scholar
  102. Fuxe K., Agnati L. F., von Euler G., Benfenati F., and Tanganelli S. (1990) Modulation of dopamine D1 and D2 transmission lines in the central nervous system, inCurrent Aspects of the Neurosciences (Osborne N. N., ed.), MacMillan, London, pp. 203–243.Google Scholar
  103. Fuxe K. and Agnati L. (1991) Two principal modes of electrochemical communication in the brain: volume versus wiring transmission, inAdvances in Neurosciences, Volume Transmission in the Brain. Novel Mechanisms for Neural Transmission (Fuxe K. and Agnati L., eds.), Raven, New York, pp. 1–9.Google Scholar
  104. Fuxe K., O'Connor W. T., Antonelli T., Osborne P. G., Tanganelli S., Agnati L. F., and Ungerstedt U. (1992a) Evidence for a substrate of neuronal plasticity based on pre- and postsynaptic neurotensin-dopamine receptor interactions in the neostriatum.Proc. Natl. Acad. Sci. USA 89, 5591–5595.PubMedCrossRefGoogle Scholar
  105. Fuxe K., von Euler G., Agnati L. F., Pich E. M., O'Connor W. T., Tanganelli S., Li X. M., Tinner B., Cintra A., Carani C., and Benfenati F. (1992b) Intramembrane interactions between neurotensin receptors and dopamine D2 receptors as a major mechanism for the neuroleptic-like action of neurotensin.Ann. NY Acad. Sci., in press.Google Scholar
  106. Fuxe K., Agnati L. F., von Euler G., Tanganelli S., O'Connor W. T., Ferré S., Hedlund P., and Zoli M. (1992c) Neuropeptide, excitatory amino acid and adenosine A2 receptors regulate D2 receptors via intramembrane receptor-receptor interactions. Relevance for Parkinson's disease and schizophrenia.Neurochem. Int. 20(Suppl.), 215S-224S.PubMedCrossRefGoogle Scholar
  107. Geraghty D. P., Livett B. G., and Burcher E. (1990) A novel substance P binding site in bovine adrenal medulla.Neurosci. Lett. 112, 276–281.PubMedCrossRefGoogle Scholar
  108. Gerfen C. R. (1992) D1 and D2 dopamine receptor regulation of striatonigral and striatopallidal neurons.Sem. Neurosci. 4, 109–118.CrossRefGoogle Scholar
  109. Gilles C., Lotstra F., and Vanderhaeghen J.-J. (1983) CCK nerve terrninals in rat striatum and limbic areas originate partly in the brainstem and partly in telencephalic areas.Life Sci. 32, 1683–1690.PubMedCrossRefGoogle Scholar
  110. Gilman A. G. (1987) G proteins: transducers of receptor-generated signals.Ann. Rev. Biochem. 56, 615–627.PubMedCrossRefGoogle Scholar
  111. Goedert M., Pinnock R. D., Downes C. P., Mantyh P. W., and Emson P. C. (1984a) Neurotensin stimulates inositol phospholipid hydrolysis in rat brain slices.Brain Res. 323, 193–197.PubMedCrossRefGoogle Scholar
  112. Goedert M., Pittaway K., Williams B. J., and Emson P. C. (1984b) Specific binding of tritiated neorotensin to rat brain membranes: characterization and regional distribution.Brain Res. 304, 71–81.PubMedCrossRefGoogle Scholar
  113. Graybiel A. M. (1990) Neurotransmitters and neuromodulators in the basal ganglia.Trends Neurosci. 13, 244–254.PubMedCrossRefGoogle Scholar
  114. Green R. G., Proudfit H. K., and Yeung S.-M. H. (1982) Modulation of striatal dopaminergic function by local injection of 5′-N-ethylcarboxamide adenosine.Science 218, 58–61.PubMedCrossRefGoogle Scholar
  115. Grimaldi R., Zini I., Zoli M., Merlo Pich E., Ferraguti F., Davalli P., Toffano A., Fuxe K., and Agnati L. F. (1991) Neuron-astroglia interactions in physiopathological conditions: possible role of volume transmission, inVolume Transmission in the Brain: Novel Mechanisms for Neural Transmission (Fuxe K. and Agnati L. F., eds.), Raven, New York, pp. 247–256.Google Scholar
  116. Guidotti A., Toffano G., and Costa E. (1978) An endogenous protein modulates the affinity of GABA and B2 receptors in rat brain.Nature 257, 553–555.CrossRefGoogle Scholar
  117. Gustafsson B., Wigström H., Abraham W. C., and Huang Y.-Y. (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials.J. Neurosci. 7, 774–780.PubMedGoogle Scholar
  118. Haefely W., Kulcsár A., Möhler H., Pieri L., Polc P., and Schaffner R. (1975) Possible involvement of GABA in the central actions of benzodiazepines, inMechanism of Action of Benzodiazepines (Costa E. and Greengard P., eds.), Raven, New York, pp. 131–151.Google Scholar
  119. Haefely W. (1992) Ligands of the GABAA receptor-associated benzodiazepine receptor.Neurosci. Facts 3, 69, 70.Google Scholar
  120. Halpain S., Girault J. A., and Greengard P. (1990) Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices.Nature 343, 369–372.PubMedCrossRefGoogle Scholar
  121. Harms H. H., Warden G., and Mulder A. H. (1979) Effects of adenosine on depolarization-induced release of various radiolabelled neurotransmitters from slices of rat corpus striatum.Neuropharmacology 18, 577–580.PubMedCrossRefGoogle Scholar
  122. Hebb D. O. (1949)The Organization of Behavior. Wiley, New York.Google Scholar
  123. Hedlund P., von Euler G., and Fuxe K. (1991a) Activation of 5-hydroxytryptamine1A receptors increases the affinity of galanin receptors in di-and telencephalic areas of the rat.Brain Res. 560, 251–259.PubMedCrossRefGoogle Scholar
  124. Hedlund P. B., Aguirre J. A., Narvaez J. A., and Fuxe K. (1991b) Centrally coinjected galanin and a 5-HT1A agonist act synergistically to produce vasodepressor responses in the rat.Eur. J. Pharmacol. 204, 87–95.PubMedCrossRefGoogle Scholar
  125. Heffner T. G., Wiley J. N., Williams A. E., Bruns R. F., Coughenour L. L., and Downs D. A. (1989) Comparison of the behavioural effects of adenosine agonists and dopamine antagonists in mice.Psychopharmacology 98, 31–37.PubMedCrossRefGoogle Scholar
  126. Heidmann T. and Changeux J.-P. (1979a) Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata.Eur. J. Biochem. 94, 255–279.PubMedCrossRefGoogle Scholar
  127. Heidmann T. and Changeux J.-P. (1979b) Fast kinetic studies on the allosteric interactions between acetylcholine receptor and local anesthetic binding sites.Eur. J. Biochem. 94, 281–296.PubMedCrossRefGoogle Scholar
  128. Herrera-Marschitz M., Forster C., and Ungerstedt U. (1985) Rotational behaviour elicited by intracerebral injections of apomorphine and pergolide in 6-hydroxydopamine-lesioned rats. I: comparison between systemic and intrastriatal injections.Acta Physiol. Scand. 125, 519–527.PubMedGoogle Scholar
  129. Herrera-Marschitz M., Casas M., and Ungerstedt U. (1988) Caffeine produces contralateral rotation in rats with unilateral dopamine denervation: comparisons with apomorphine-induced responses.Psychopharmacology 94, 38–45.PubMedCrossRefGoogle Scholar
  130. Hill J. A., Jr. (1992) Nicotinic receptor-associated 43K protein and progressive stabilization of the post-synaptic membrane.Mol. Neurobiol. 6, 1–17.PubMedGoogle Scholar
  131. Hill D. R., Campbell N. J., Shaw T. M., and Woodruff G. N. (1987) Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in the rat CNS using highly selective non-peptide CCK antagonist.J. Neurosci. 7, 2967–2976.PubMedGoogle Scholar
  132. Hille B. (1992) G protein-coupled mechanisms and nervous signaling.Neuron 9, 187–195.PubMedCrossRefGoogle Scholar
  133. Hollenberg M. D. (1991) Structure-activity relationships for transmembrane signaling: the receptor's turn.FASEB J. 5, 178–186.PubMedGoogle Scholar
  134. Howell G. A., Welch M. G., and Fredrichson C. J. (1984) Stimulation induced uptake and release of zinc in hippocampal slices.Nature 308, 736–738.PubMedCrossRefGoogle Scholar
  135. Huganir R. L. and Greengrad P. (1983) cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor.Proc. Natl. Acad. Sci. USA 80, 1130–1134.PubMedCrossRefGoogle Scholar
  136. Huganir R. L., Delcour A. H., Greengard P., and Hess G. P. (1986) Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization.Nature 321, 774–776.PubMedCrossRefGoogle Scholar
  137. Huganir R. L., and Greengard P. (1987) Regulation of receptor function by protein phosphorylation.Trends Pharmacol. Sci. 8, 472–477.CrossRefGoogle Scholar
  138. Huganir R. L., and Greengard P. (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation.Neuron 5, 555–567.PubMedCrossRefGoogle Scholar
  139. Hughes J., Boden P., Costall B., Domeney A., Kelly E., Horwell D. C., Hunter J. C., Pinnock R. D., and Woodruff G. N. (1990) Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity.Proc. Natl. Acad. Sci. USA 87, 6728–6732.PubMedCrossRefGoogle Scholar
  140. Härfstrand A., Fuxe K., Agnati L., and Fredholm B. (1989) Reciprocal interactions between alpha 2-adrenoceptor agonist and neuropeptide Y binding sites in the nucleus tractus solitarius of the rat. A biochemic and autoradiographic analysis.J. Neural. Transm. 75, 83–99.PubMedCrossRefGoogle Scholar
  141. Hökfelt T., Skiboll L., Rehfeld M. F., Goldstein M., Markey K., and Dann O. (1980) A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contain a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing.Neuroscience 5, 2093–2124.PubMedCrossRefGoogle Scholar
  142. Hökfelt T., Everitt B. J., Theodorsson-Norheim E., and Goldstein M. (1984) Occurrence of neurotensin-like immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons.J. Comp. Neurol. 222, 543–559.PubMedCrossRefGoogle Scholar
  143. Ito I., Tanabe S., Kohda A., and Sugiyama H. (1990) Allosteric potentiation of quisqulate receptors by a nootropic drug aniracetam.J. Physiol. 424, 533–543.PubMedGoogle Scholar
  144. Ito M. (1991) The cellular basis of cerebellar plasticity.Curr. Opin. Neurobiol. 1, 616–620.PubMedCrossRefGoogle Scholar
  145. Jarvis M. F., Jackson R. H., and Williams M. (1989) Autoradiographic characterization of high affinity adenosine A2 receptors in the rat brain.Brain Res. 484, 111–118.PubMedCrossRefGoogle Scholar
  146. Jarvis M. F. and Williams M. (1991) Direct auto-radiographic localization of adenosine A2 receptors in the rat brain.Eur. J. Pharmacol. 168, 243–246.CrossRefGoogle Scholar
  147. Johnson J. W. and Ascher P. (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons.Nature 325, 529–531.PubMedCrossRefGoogle Scholar
  148. Jolicoeur F. B., Fivest R., St. Pierre S., Gagne M. A., and Dumais M. (1985) The effects of neurotensin and [D-Tyr11]-NT on the hyperactivity induced by intra-accumbens administration of a potent dopamine receptor agonist.Neuropeptides 6, 143–156.PubMedCrossRefGoogle Scholar
  149. Josselyn S. A. and Beninger R. J. (1991) Behavioural effects of intrastriatal caffeine mediated by adenosinergic modulation of dopamine.Pharmacol. Biochem. Behav. 39, 97–103.PubMedCrossRefGoogle Scholar
  150. Kalivas P. W., Nemeroff C. B., and Prange A. J., Jr. (1984) Neurotensin microinjections into the nucleus accumbens antagonizes dopamine-induced increase in locomotion and rearing.Neuroscience 11, 919–930.PubMedCrossRefGoogle Scholar
  151. Kalivas P. W. (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area.Brain Res. Rev. 18, 75–113.PubMedCrossRefGoogle Scholar
  152. Kemp J. A. and Priestley T. (1991) Ifenprodil blocks N-methyl-D-aspartate receptors by a two-component mechanism.Mol. Pharmacol. 39, 666–670.PubMedGoogle Scholar
  153. Kemp J. A. and Leeson P. D. (1993) The glycine site of the NMDA receptor—five years on.Trends Pharmacol. Sci. 14, 20–25.PubMedCrossRefGoogle Scholar
  154. Kessler M., Terramani T., Lynch G., and Baudry M. (1989) A glycine site associated with NMDA receptors: characterization and identification of a new class of antagonists.J. Neurochem. 52, 1319–1328.PubMedCrossRefGoogle Scholar
  155. Laufer R. and Changeux J. P. (1989) Activity-dependent regulation of gene expression in muscle and neuronal cells.Mol. Neurobiol. 3, 1–53.PubMedGoogle Scholar
  156. Le Moine C., Normand E., Guitteny A. F., Fouque B., Teoule R., and Bloch B. (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain.Proc. Natl. Acad. Sci. USA 87, 230–234.PubMedCrossRefGoogle Scholar
  157. Le Moine C., Normand E., and Bloch B. (1991) Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene.Proc. Natl. Acad. Sci. USA 88, 4205–4209.PubMedCrossRefGoogle Scholar
  158. Lefkowitz R. J. and Caron M. G. (1988) Adrenergic receptors.J. Biol. Chem. 263, 4993–4996.PubMedGoogle Scholar
  159. Legendre P. and Westbrook G. L. (1991) Purification and characterization of naturally occurring benzodiazepine receptor ligands in rat and human brain.Mol. Pharmacol. 39, 267–274.PubMedGoogle Scholar
  160. Léna C. and Changeux J.-P. (1993) Allosteric modulations of the nicotinic acetylcholine receptor.Trends Neurosci. 16, 181–186.PubMedCrossRefGoogle Scholar
  161. Li X.-M., von Euler G., Hedlund P. B., Finnman U.-B., and Fuxe K. (1993a) The C-terminal neurotensin-(8–13) fragment potently modulates rat neostriatal dopamine D2 receptors.Eur. J. Pharmacol. 234, 125–128.PubMedCrossRefGoogle Scholar
  162. Li X. M., Finnman U. B., von Euler G., Hedlund P. B., and Fuxe K. (1993b) Neuromedin N is more potent than neurotensin in modulating DA D2 receptor agonist binding in the rat neostriatum.Neurosci. Lett., in press.Google Scholar
  163. Li X. M., Hedlund P. B., von Euler G., and Fuxe K. (1993c) Cholecystokinin B receptors and D1 receptors interact in the regulation of striatal D2 receptors.J. Neurosci., submitted.Google Scholar
  164. Libert F., Parmentier M., Lefort A., Dinsart C., Van Sande J., Maenhaut C., Simons M.-J., Dumont J. E., and Vasart G. (1989) Selective amplification and cloning of four new members of the G-protein-coupled receptor family.Science 244, 569–572.PubMedCrossRefGoogle Scholar
  165. Libert F., Passage E., Parmentier M., Simons M.-J., Vassart G., and Mattei M.-G. (1991) Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor.Genomics 11, 225–227.PubMedCrossRefGoogle Scholar
  166. Linder M. E. and Gilman A. G. (1992) G proteins.Sci. Am. 267, 36–43.Google Scholar
  167. Lomasney J. W., Cotecchia S., Lefkowitz R. J., and Caron M. G. (1991) Molecular biology of α-adrenergic receptors: implications for receptor classification and for structure-function relationships.Biochim. Biophys. Acta 1095, 127–139.PubMedCrossRefGoogle Scholar
  168. Lupica C. R., Cass W. A., Zahniser N. R., and Dunwiddie T. V. (1990) Effects of the selective adenosine A2 receptor agonist CGS 21680 on in vitro electrophysiology, cAMP formation and dopamine release in rat hippocampus and striatum.J. Pharmacol. Exp. Ther. 252, 1134–1141.PubMedGoogle Scholar
  169. Lüddens H. and Wisden W. (1991) Function and pharmacology of multiple GABAA receptor subunits.Trends Pharmacol. Sci. 12, 49–51.PubMedCrossRefGoogle Scholar
  170. Macdonald R. L., Rogers C. J., and Twyman R. E. (1989) Kinetic properties of the GABAA receptor main conductance state of mouse spinal neurons in culture.J. Physiol. (Lond.) 410, 479–499.Google Scholar
  171. Maenhaut C., Van Sande J., Libert F., Abramowicz M., Parmentier M., Vanderhaeghen J.-J., Dumont J. E., Vassart G., and Schiffman S. N. (1991) RDC8 codes for an adenosine A2 receptor with physiological constitutive activity.Biochem. Biophys. Res. Comm. 173, 1169–1178.CrossRefGoogle Scholar
  172. Martinez-Mir M. I., Probst A., and Palacios J. M. (1991) Adenosine A2 receptors: selective localization in the human basal ganglia and alterations with disease.Neuroscience 42, 697–706.PubMedCrossRefGoogle Scholar
  173. Mayer M. L., Vicklicky L., and Westbrook G. W. (1989) Open channel block of NMDA receptor responses evoked by tricyclic antidepressants.J. Physiol. (Lond.) 415, 329–350.Google Scholar
  174. Merchant K. M., Dobner P. R., and Dorsa D. M. (1992) Differential effects of haloperidol and clozapine on neurotensin gene transcription in rat neostriatum.J. Neurosci. 12, 652–663.PubMedGoogle Scholar
  175. Michaelis M. I., Michaelis E. K., and Myers S. L. (1979) Adenosine modulation of synaptosomal dopamine release.Life Sci. 24, 2083–2092.PubMedCrossRefGoogle Scholar
  176. Miles K., Greengard P., and Huganir R. L. (1989) Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotubes.Neuron 2, 1517–1524.PubMedCrossRefGoogle Scholar
  177. Miyagi T., Sagawa J., Konno K., Handa S., and Tsuiki S. (1990) Biochemical and immunological studies on two distinct ganglioside-hydrolyzing sialidases from the particulate fraction of rat brain.J. Biochem. (Tokyo) 107, 787–793.Google Scholar
  178. Miyoshi R., Kito S., Ishida H., and Nakashima M. (1989) Modulation of dopamine D1 receptor binding by neurotensin in the rat striatum.Neurochem. Int. 15, 493–496.CrossRefGoogle Scholar
  179. Monaghan D. T., Olverman H. J., Nguyen L., Watkins J., and Cotman C. W. (1988) Two classes of NMDA recognition sites: differential distribution and differential regulation by glycine.Proc. Natl. Acad. Sci. USA 85, 9836–9840.PubMedCrossRefGoogle Scholar
  180. Monod J., Wyman J., and Changeux J.-P. (1965) On the nature of allosteric transitions: a plausible model.J. Mol. Biol. 12, 88–118.PubMedGoogle Scholar
  181. Moran T. H., Robinson P. H., Goldrich M. S., and McHugh P. R. (1986) Two brain cholecystokinin receptors: implications for behavioural actions.Brain Res. 362, 175–179.PubMedCrossRefGoogle Scholar
  182. Morgan M. E. and Vestal R. E. (1989) Methylxanthine effects on caudate dopamine release as measured by in vivo electrochemistry.Life Sci. 45, 2025–2039.PubMedCrossRefGoogle Scholar
  183. Moriyoshi K., Masu M., Ishii T., and Nakanishi S. (1991) Molecular cloning and characterization of the rat NMDA receptor.Nature 354, 31–37.PubMedCrossRefGoogle Scholar
  184. Mulle C., Benoit P., and Changeux J. P. (1988) Calcitonin gene-related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cell.Proc. Natl. Acad. Sci. USA 85, 5728–5732.PubMedCrossRefGoogle Scholar
  185. Murayama T., Itahashi Y., and Nomura Y. (1990) Possible involvement of pertussis toxin-sensitive G proteins and D2 dopamine receptors in the A1 adenosine receptor-adenylate cyclase system in rat cerebral cortex.J. Neurochem. 55, 1631–1638.PubMedCrossRefGoogle Scholar
  186. Nemeroff C. B., Luttinger D., Hernandez D. E., Mailman R. B., Mason G. A., Davis S. D., Widerlöv E., Frye G. D., Kilts C., Beaumont K., Breese G. R., and Prange A. J., Jr. (1983a) Interactions of neurotensin with brain dopamine systems: biochemical and behavioural studies.J. Pharmacol. Exp. Ther. 225, 337–345.PubMedGoogle Scholar
  187. Nemeroff C. B., Youngblood W., Manberg P. J., Prange A. J., Jr. and Kizer J. S. (1983b) Regional brain concentrations of neuropeptides in Huntington's chorea and schizophrenia.Science 221, 972–975.PubMedCrossRefGoogle Scholar
  188. Nemeroff C. B. (1986) The interaction of neurotensin with dopaminergic pathways in the central nervous system: basic neurobiology and implications for the pathogenesis and treatment of schizophrenia.Psychoneuroendocrinology 11, 15–37.PubMedCrossRefGoogle Scholar
  189. Nikodijeviç O., Daly J. W., and Jacobson K. A. (1990) Characterization of the locomotor depression produced by an A2-selective adenosine agonist.FEBS Lett. 261, 67–70.PubMedCrossRefGoogle Scholar
  190. O'Connor W. T., Tanganelli S., Ungerstedt U., and Fuxe K. (1992) The effects of neurotensin on GABA and acetylcholine release in the dorsal striatum of the rat: anin vivo microdialysis study.Brain Res. 573, 209–216.PubMedCrossRefGoogle Scholar
  191. O'Dowd B. F., Lefkowitz R. J., and Caron M. G. (1989) Structure of the adrenergic and related receptors.Ann. Rev. Neurosci. 12, 67–83.PubMedCrossRefGoogle Scholar
  192. Onali P., Olianas M. C., and Gessa G. L. (1985) Characterization of dopamine receptors mediating inhibition of adenylyl cyclase activity in rat striatum.Mol. Pharmacol. 28, 138–145.PubMedGoogle Scholar
  193. Parkinson F. E. and Fredholm B. B. (1990) Autoradiographic evidence for G-protein coupled A2-receptors in rat neostriatum using [3H]CGS21680 as a ligand.Naunyn-Schmiedeberg's Arch. Pharmacol. 342, 85–89.CrossRefGoogle Scholar
  194. Paschen W., Röhn G., Meese C. O., Djuricic B., and Schmidt-Kastner R. (1988) Polyamine metabolism in reversible cerebral ischemia: effect of a-difluoromethylornithine.Brain Res. 453, 9–16.PubMedCrossRefGoogle Scholar
  195. Perez-Clausell J. and Danscher G. (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study.Brain Res. 337, 91–98.PubMedCrossRefGoogle Scholar
  196. Premont J., Perez M., Blanc G., Tassin J. P., Thierry A. M., Herve D., and Bockaert J. (1979) Adenosine-sensitive adenylate cyclase in rat brain homogenates: kinetic characteristics, specificity, topographical, subcellular and cellular distribution.Mol. Pharmacol. 16, 790–804.PubMedGoogle Scholar
  197. Pycock C. J. (1980) Turning behaviour in animals.Neuroscience 5, 461–514.PubMedCrossRefGoogle Scholar
  198. Roche P. C. and Ryan R. J. (1989) Purification, characterization, and amino-terminal sequence of rat ovarian receptor for luteinizing hormone/human choriogonadotropin.J. Biol. Chem. 264, 4636–4641.PubMedGoogle Scholar
  199. Role L. W. (1984) Substance P modulation of acetyl-choline-induced currents in embryonic chicken sympathetic and ciliary ganglion neurons.Proc. Natl. Acad. Sci. USA 81, 2924–2928.PubMedCrossRefGoogle Scholar
  200. Rosenbaum L. C., Malenick D. A., and Schimerlik M. I. (1987) Phosphorylation of the porcine atrial muscarinic acetylcholine receptor by cAMP dependent protein kinase.Biochemistry 26, 8183–8188.PubMedCrossRefGoogle Scholar
  201. Ross A., Rapuano M., Schmidt J., and Prives J. (1987) Phosphorylation and assembly of nicotinic acetylcholine receptor subunits in cultured muscle cells.J. Biol. Chem. 262, 14,640–14,647.Google Scholar
  202. Ross A., Rapuano M., and Prives J. (1988) Induction of phosphorylation and cell surface redistribution of acetylcholine receptors by phorbol ester and carbamylcholine in cultured chick muscle cells.J. Cell Biol. 107, 1139–1145.PubMedCrossRefGoogle Scholar
  203. Ross E. M. (1989) Signal sorting and amplification through G protein-coupled receptors.Neuron 3, 141–152.PubMedCrossRefGoogle Scholar
  204. Rostene W. H., Fischette C. T., and Mc Ewen B. S. (1983a) Modulation, by VIP of serotonin receptors in membranes from rat hippocampus.J. Neurosci. 3, 2414–2419.PubMedGoogle Scholar
  205. Rostene W. H., Fischette C. T., Rainbow T. C., and Mc Ewen B. S. (1983b) Modulation by VIP of serotonin receptors in the dorsal hippocampus of the rat brain: an autoradiographic study.Neurosci. Lett. 37, 143–148.PubMedCrossRefGoogle Scholar
  206. Rothman R. B., Long J. B., Bykov V., Jacobsen A. E.m, Rice K. C., and Holaday J. W. (1988) Beta-FNA binds irreversibly to the opiate receptor complex: in vivo and in vitro evidence.J. Pharmacol. Exp. Ther. 247, 405–416.PubMedGoogle Scholar
  207. Rothstein J. D. (1992) Endogenous benzodiazepine receptor ligands, in human and animal hepatic encephalopathy.J. Neurochem. 58, 2102–2115.PubMedCrossRefGoogle Scholar
  208. Sato M., Kiyama H., Yoshida S., Saika T., and Tohyama M. (1991) Postnatal ontogeny of cells expressing prepro-neurotensin/neuromedin N mRNA in the rat forebrain and midbrain: a hybridization study involving isotope-labeled and enzyme-labeled probes.J. Comp. Neurol. 54, 300–315.CrossRefGoogle Scholar
  209. Sattin A. and Rall T. W. (1970) The effects of adenosine and adenine nucleotides on the cyclic adenosine 3′,5′ phosphate content of guinea pig cerebral cortex slices.Mol. Pharmacol. 6, 13–23.PubMedGoogle Scholar
  210. Sawutz D. G., Lanier S. M., Warren C. D., and Graham R. M. (1987) Glycosylation of the mammalian alpha 1-adrenergic receptor by complex type N-linked oligosaccharides.Mol. Pharmacol. 32, 565–571.PubMedGoogle Scholar
  211. Schiffmann S. N., Jacobs O., and Vanderhaeghen J.-J. (1991a) RDC8 is expressed by enkephalin but not substance P neurons: an in situ hybridization histochemistry study.J. Neurochem. 57, 1062–1067.PubMedCrossRefGoogle Scholar
  212. Schiffmann S. N., Libert F., Vassart G., and Vanderhaeghen J.-J. (1991b) Distribution of adenosine A2 receptor mRNA in the human brain.Neurosci. Lett. 130, 177–181.PubMedCrossRefGoogle Scholar
  213. Schiffmann S. N., Halleux P., Menu R., and Vanderhaeghen J.-J. (1993) Adenosine A2a receptor expression in striatal neurons: implications for basal ganglia pathophysiology.Drug Dev. Res. 28, 381–385.CrossRefGoogle Scholar
  214. Schindler H., Spillecke F., and Neumann E. (1984) Different channel properties ofTorpedo acetyl-choline receptor monomers and dimers reconstituted in planar membranes.Proc. Natl. Acad. Sci. USA 81, 6222–6226.PubMedCrossRefGoogle Scholar
  215. Schlessinger J. (1988) Signal transduction by allosteric receptor oligomerization.Trends Biochem. Sci. 13, 443–447.PubMedCrossRefGoogle Scholar
  216. Schoffelmeer A. N. M., Yao Y.-H., Gioannini T. L., Hiller J. M., Ofri D., Roques B. P., and Simon E. J. (1990) Cross-linking of human [125I]β-endorphin to opioid receptors in rat striatal membranes: biochemical evidence for the existence of amu/delta opioid receptor complex.J. Pharmacol. Exp. Ther. 253, 419–426.PubMedGoogle Scholar
  217. Seeman P., Niznik H. B., Guan H. C., Booth G., and Ulpain C. (1989) Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain.Proc. Natl. Acad. Sci. USA 86, 10,156–10,160.CrossRefGoogle Scholar
  218. Sheikh S. P., and Williams J. A. (1990) Structural characterization of Y1 and Y2 receptors for neuropeptide Y and peptide YY by affinity cross-linking.J. Biol. Chem. 256, 8304–8310.Google Scholar
  219. Shi W.-X. and Bunney B. S. (1991) Neurotensin modulates autoreceptor mediated dopamine effects on midbrain dopamine cell activity.Brain Res. 543, 315–321.PubMedCrossRefGoogle Scholar
  220. Shi W.-X. and Bunney B. S. (1992) Actions of neurotensin: a review of the electrophysiological studies.Ann. NY Acad. Sci. 668, 129–145.PubMedCrossRefGoogle Scholar
  221. Sibley D. R., and Creese I. (1983) Regulation of ligand binding to pituitary D-2 dopaminergic receptors. Effects of divalent cations and functional group modification.J. Biol. Chem. 25, 4957–4961.Google Scholar
  222. Sieghart W. (1992) GABAA receptors: ligand-gated Cl ion channels modulated by multiple, drug-binding sites.Trends Pharmacol. Sci. 13, 446–450.PubMedCrossRefGoogle Scholar
  223. Siman R., Baudry M., and Lynch G. (1985) Regulation of glutamate receptor binding by the cytoskeletal protein fodrin.Nature 313, 225–228.PubMedCrossRefGoogle Scholar
  224. Simmons L. K., Schuetze S. M., and Role L. W. (1990) Substance P modulates single-channel properties of neuronal nicotinic acetylcholine receptors.Neuron 4, 393–403.PubMedCrossRefGoogle Scholar
  225. Simon M. I., Strathmann. M. P., and Gautam N. (1991) Diversity of G proteins in signal transduction.Science 252, 802–808.PubMedCrossRefGoogle Scholar
  226. Simonds W. F., Butrynski J. E., Gautman N., Unson C. G., and Spiegel A. M. (1991) G-protein beta/gamma dimers: membrane targeting requires subunit coexpression and intact gamma CAAX domain.J. Biol. Chem. 266, 5363–5366.PubMedGoogle Scholar
  227. Sivilotti L. and Nistri A. (1990) GABA receptor mechanisms in the central nervous system.Prog. Neurobiol. 36, 35–92.CrossRefGoogle Scholar
  228. Smith K. E., Borden L. A., Hartig P. R., Branchek, T., and Weinshank R. L. (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors.Neuron 8, 927–935.PubMedCrossRefGoogle Scholar
  229. Snyder S. H., Katims J. J., Annau Z., Bruns R. F., and Daly J. W. (1981) Adenosine receptors and behavioural actions of methylxanthines.Proc. Natl. Acad. Sci. USA,78, 3260–3264.PubMedCrossRefGoogle Scholar
  230. Snyder S. H. (1985) Adenosine as a neuromodulator.Ann. Rev. Neurosci. 8, 103–124.PubMedCrossRefGoogle Scholar
  231. Spealman R. D. and Coffin V. L. (1986) Behavioural effects of adenosine analogues in squirrel monkeys: relation to adenosine A2 receptors.Psychopharmacology 90, 419–421.PubMedCrossRefGoogle Scholar
  232. Spiegel A. M., Backlund P. S. J. R., Butrynski J. E., Jones T. L. Z., and Simonds W. F. (1991) The G protein connection: molecular basis of membrane association.Trends Biochem. Sci. 16, 338–341.PubMedCrossRefGoogle Scholar
  233. Spiegel A. M. (1992) G proteins in cellular control.Curr. Opin. Cell Biol. 4, 203–211.PubMedCrossRefGoogle Scholar
  234. Stallcup W. B. and Patrick J. (1980) Substance P enhances cholinergic receptor desensitization in a clonal nerve cell line.Proc. Natl. Acad. Sci. USA 77, 634–638.PubMedCrossRefGoogle Scholar
  235. Sternweis P. C. and Pang I. (1990) The G-protein-channel connection.Trends Neurosci. 13, 122–126.PubMedCrossRefGoogle Scholar
  236. Stevens C. (1993) Quantal release of neurotransmitter and long-term potentiation.Cell 72,Neuron 10 (Suppl.), 55–63.PubMedCrossRefGoogle Scholar
  237. Strange P. G. (1990) Aspects of the structure of the D2 dopamine receptor.Trends Neurosci. 13, 373–378.PubMedCrossRefGoogle Scholar
  238. Study R. E. and Barker J. L. (1981) Diazepam and (-) pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of γ-aminobutyric acid responses in cultured central neurons.Proc. Natl. Acad. Sci. USA 78, 7180–7184.PubMedCrossRefGoogle Scholar
  239. Tallman J. F., Thomas, J. W., and Gallager D. W. (1978) GABA-ergic modulation, of BZ binding site sensitivity.Nature,274, 384–385.CrossRefGoogle Scholar
  240. Tanaka K., Masu M., and Nakanishi S. (1990) Structure and functional expression of the cloned rat neurotensin receptor.Neuron 4, 847–851.PubMedCrossRefGoogle Scholar
  241. Tanganelli S., von Euler G., Fuxe K., Agnati L. F., and Ungerstedt U. (1989) Neurotensin, counteracts apomorphine-induced inhibition of dopamine release as studied by microdialysis in rat neostriatum.Brain Res. 502, 319–324.PubMedCrossRefGoogle Scholar
  242. Tanganelli S., Fuxe K., von Euler G., Agnati L. F., Ferraro L., and Ungerstedt U. (1990) Involvement of cholecystokinin in the control of striatal dopamine autoreceptors.Naunyn-Schmiedeberg's Arch. Pharmacol. 342, 300–304.CrossRefGoogle Scholar
  243. Tanganelli S., Li X.-M., Ferraro L., von Euler G., O'Connor W. T., Bianchi C., Beani L., and Fuxe K. (1993) Neurotensin and cholecystokinin octapeptide control synergistically dopamine release and dopamine D2 receptor affinity in rat neostriatum.Eur. J. Pharmacol. 230, 159–166.PubMedCrossRefGoogle Scholar
  244. Thithapandha A., Maling H. M., and Gillette J. R. (1972) Effects of caffeine and theophylline on activity of rats in relation to brain xanthine concentrations.Proc. Exp. Biol. Med. 139, 582–586.Google Scholar
  245. Titeler M. and Seeman P. (1979) Selective labelling of different DA receptors by a new agonist 3H-ligand: 3H-NPA.Eur. J. Pharmacol. 56, 291,292.PubMedCrossRefGoogle Scholar
  246. Turner J. T., James-Kracke M. R., and Camden J. M. (1990) Regulation of neurotensin receptor and intracellular calcium in HT29 cells.J. Pharmacol. Exp. Ther. 253, 1049–1056.PubMedGoogle Scholar
  247. Ullrich A. and Schlessinger J. (1990) Signal transduction by receptors with tyrosine kinase activity.Cell 61, 203–212.PubMedCrossRefGoogle Scholar
  248. Ungerstedt U. (1971) Postsynaptic supersensitivity after 6-OH-DA induced degeneration of the nigrostriatal DA system in the rat brain.Acta Physiol. Scand. 367, 69–93.Google Scholar
  249. Vallar L. and Meldolesi J. (1989) Mechanisms of signal transduction at DA D2 receptors.Trends Pharmacol. Sci. 10, 74–77.PubMedCrossRefGoogle Scholar
  250. Van Calker D., Muller M., and Hamprecht B. (1979) Adenosine regulates via two different types of receptors the accumulation of cAMP in cultured brain cells.J. Neurochem. 33, 999–1005.PubMedCrossRefGoogle Scholar
  251. Van Ree J. M., Gadfori O., and DeWied D. (1983) In rats, the behavioral profile of CCK-8 related peptides resembles that of antipsychotic agents.Eur. J. Pharmacol. 93, 63–78.PubMedCrossRefGoogle Scholar
  252. Van Tol H. H. M., Bunzow J. B., Guan H. C., Sunahara R. K., Seeman P., Niznik H. B., and Civelli O. (1991) Cloning of the gene for a human D4 receptor with high affinity for the antipsychotic clozapine.Nature 350, 610–614.PubMedCrossRefGoogle Scholar
  253. Vapaatalo G. C. and McGuffin-Clineschmidt J. C. (1981) Stereospecificity in some central and circulatory effects of phenylisopropyl-adenosine (PIA).Drug Res. 25, 407–410.Google Scholar
  254. Venter J. C. and Fraser C. M. (1983) Beta-adrenergic recptor isolation and characterization with immobilized drugs and monoclonal antibodies.Fed. Proc. 42, 273–278.PubMedGoogle Scholar
  255. Vicini S., Mienville J.-M., and Costa E. (1987) Actions of benzodiazepine and β-carboline derivatives on γ-aminobutyric acid-activated Cl channels recorded from membrane patches of neonatal rat cortical neurons in culture.J. Pharmacol. Exp. Ther. 243, 1195–1201.PubMedGoogle Scholar
  256. von Euler G. and Fuxe K. (1987) Neurotensin reduces the affinity of D2, dopamine receptors in rat striatal membranes.Acta Physiol. Scand. 131, 525,526.Google Scholar
  257. von Euler G., Fuxe K., van der Ploeg I., Fredholm B. B., and Agnati L. F. (1989) Pertussis toxin treatment counteracts intramembrane interactions, between neuropeptide Y receptors and a2-adrenoceptors.Eur. J Pharmacol. 172, 435–441.CrossRefGoogle Scholar
  258. von Euler G., Mailleux P., Vanderhaeghen J. J., and Fuxe K. (1990a) Neurotensin reduces the affinity of dopamine D2 receptors in membranes from post mortem human caudate-putamen.Neurosci. Lett. 109, 325–30.CrossRefGoogle Scholar
  259. von Euler G., Meister B., Hökfelt T., Eneroth P., and Fuxe K. (1990b) Intraventricular injection, of neurotensin reduces dopamine D2 agonist binding in rat forebrain and intermediate lobe of the pituitary gland. Relationship to serum hormone levels and nerve terminal coexistence.Brain Res. 531, 253–262.CrossRefGoogle Scholar
  260. von Euler G. (1991) Biochemical characterization of the intramembrane interaction between neurotensin and dopamine D2 receptors in the rat brain.Brain Res. 561, 93–99.CrossRefGoogle Scholar
  261. von Euler G., van der Ploeg I., Fredholm B. B., and Fuxe K. (1991) Neurotensin decreases the affinity of dopamine D2 agonist binding by a G-protein-independent mechanism.J. Neurochem. 56, 178–183.CrossRefGoogle Scholar
  262. von Euler G., Mailleux P., von Euler M., Schiffmann S. N., Vanderhaeghen J. J., and Fuxe K. (1992) Coactivation of dopamine D1 and D2 receptors increases the affinity of cholecystokinin-8 receptors in membranes from post-mortem human caudateputaman.Brain Res. 584, 157–162.CrossRefGoogle Scholar
  263. Wahlestedt C. and H»kanson R. (1987) Effects of NPY at sympathetic neuroeffector junctions: existence of Y1 and Y2 receptors, inNeuronal Messengers in Vascular Function (Nobin A., Owman C., and Areklo-Nobin B., eds.), Elsevier, Amsterdam, pp. 231–242.Google Scholar
  264. Waldeck B. (1973) Sensitization, by caffeine of central catecholamine receptors.J. Neural. Transm. 34, 61–72.PubMedCrossRefGoogle Scholar
  265. Wang R. Y. and Hu X.-T. (1984) Does cholecystokinin potentiate dopamine action in the nucleus accumbens?Brain Res. 390, 363–367.Google Scholar
  266. Weiss D. S. and Magleby K. L. (1989) Gating scheme for single GABA-activated Cl channels determined from stability plots, dwell-time distributions and adjacentinterval durations.J. Neurosci. 9, 1314–1324.PubMedGoogle Scholar
  267. White B. C., Simpson C. C., and Harkins D. (1978) Monoamine synthesis and caffeine-induced locomotor activity.Neuropharmacology 27, 511–513.CrossRefGoogle Scholar
  268. Williams K., Dawson V. L., Romano C., Dichter M. A., and Molinoff P. B. (1990) Characterization of polyamines having agonist, antagonist, and inverse agonist effects at the polyamine recognition site of the NMDA receptor.Neuron 5, 199–208.PubMedCrossRefGoogle Scholar
  269. Williams K., Romano C., Dichter M. A., and Molinoff P. B. (1991) Modulation of NMDA receptor by polyamines.Life Sci. 48, 469–498.PubMedCrossRefGoogle Scholar
  270. Wood P. L., Kim H. S., and Hutchison A. (1989) Inhibition of nigrostriatal release of DA in the rat by adenosine receptor agonist: A1 receptor mediation.Neuropharmacology 28, 21–24.PubMedCrossRefGoogle Scholar
  271. Yeramian E., Trautmann A., and Claverie P. (1986) Acetylcholine receptors are not functionally independent.Biophys. J. 50, 253–263.PubMedCrossRefGoogle Scholar
  272. Zetler G. (1985) Neuropharmacological profile of cholecystokinin-like peptides.Ann. NY Acad. Sci. 448, 448–469.PubMedCrossRefGoogle Scholar
  273. Zoli M., Zini I., Grimaldi R., Biagini G., and Agnati L. F. (1993) Effects of putrescine synthesis blockade on neuronal loss and astroglial reaction after transient forebrain ischemia.Int. J. Dev. Neurosci., in press.Google Scholar

Copyright information

© Humana Press, Inc. 1994

Authors and Affiliations

  • Michele Zoli
    • 2
  • Luigi F. Agnati
    • 2
  • Peter B. Hedlund
    • 1
  • Xi Ming Li
    • 1
  • Sergi Ferré
    • 1
  • Kjell Fuxe
    • 1
  1. 1.Department of Histology and NeurobiologyKarolinska InstitutetStockholmSweden
  2. 2.Institute of Human PhysiologyUniversity of ModenaModenaItaly

Personalised recommendations