Advertisement

Journal of Solution Chemistry

, Volume 26, Issue 3, pp 249–266 | Cite as

A critical review of methods for obtaining ionic volumes in solution

  • Glenn Hefter
  • Yizhak Marcus
Article

Abstract

The various major methods for obtaining individual or “absolute” ionic standard partial molar volumes V‡(ion) from whole electrolyte data in both aqueous and nonaqueous solutions are critically reviewed. A number of undetected errors in previous analyses are pointed out, and it is demonstrated that the reported agreement amongst the various methods in aqueous solution is largely fortuitous. All methods are shown to be unsatisfactory to varying degrees, with the reference electrolyte approach, using an electrolyte such as tetraphenylarsonium tetraphenylborate, appearing to be the least objectionable of those currently available. It is recommended that, subject to future theoretical and experimental developments, the assumption that, at 25‡C: - V‡(Ph4As+) - V‡(BPh4) = 8 cm3-mol-1, or its equivalent: V‡(Ph4P+) - V‡(BPh 4 - ) = 2 cm3-mol-1 be used in all solvents.

Key Words

Partial molar volumes nonaqueous solvents tetraphenylarsonium tetraphenylborate ultrasonic vibration potentials reference electrolytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Marcus,Ion-Solvation, (Wiley, New York, 1985).Google Scholar
  2. 2.
    J. E. Desnoyers, G. Perron, and A. H. Roux, inSurfactant Solutions-New Methods of Investigation, R. Zana, ed., (Marcel Dekker, New York, 1987).Google Scholar
  3. 3.
    G. T. Hefter, J.-P. E. Grolier, and A. H. Roux,J. Solution Chem. 18, 229 (1989).CrossRefGoogle Scholar
  4. 4.
    F. J. Millero, inStructure and Transport Processes in Water and Aqueous Solutions, R. A. Home, ed., (Wiley, New York, 1972).Google Scholar
  5. 5.
    F. J. Millero, inBiophysical Properties of the Skin, H. R. Eiden, ed., (Wiley, New York, 1971).Google Scholar
  6. 6.
    G. A. Bottomley and M. T. Bremers,Austral. J. Chem. 39, 1959 (1986).CrossRefGoogle Scholar
  7. 7.
    P. C. Withers, G. Morrison, G. T. Hefter, and T. S. Pang,J. Exptl. Biol. 188, 175 (1994).Google Scholar
  8. 8.
    P. Atkins, G. T. Hefter, and P. Singh,J. Solution Chem. 20, 1059 (1991).CrossRefGoogle Scholar
  9. 9.
    J. E. Desnoyers and C. Jolicoeur, inModem Aspects of Electrochemistry, Vol. 5, J. O. Bockris and B. E. Conway, eds., (Plenum Press, New York, 1969).Google Scholar
  10. 10.
    M. H. Panckhurst,Rev. Pure Appl. Chem. 19, 45 (1969).Google Scholar
  11. 11.
    G. Curthoys and J. G. Mathieson,Trans. Faraday Soc. 1970,66, 43 (1970).CrossRefGoogle Scholar
  12. 12.
    F. J. Millero,Chem. Rev. 71, 147 (1971).CrossRefGoogle Scholar
  13. 13.
    B. E. Conway,J. Solution Chem. 7, 721 (1978).CrossRefGoogle Scholar
  14. 14.
    B. S. Krumgalz,J. Chem. Soc. Faraday Trans. I. 76, 1887 (1980).CrossRefGoogle Scholar
  15. 15.
    T. S. Pang,Ph.D. Thesis, Murdoch University, 1996.Google Scholar
  16. 16.
    Y. Marcus, G. T. Hefter, and T.-S. Pang,J. Chem. Soc. Faraday Trans. 90, 1899 (1994).CrossRefGoogle Scholar
  17. 17.
    T. S. Pang and G. T. Hefter, in preparation.Google Scholar
  18. 18.
    R. Zana and E. Yeager,J. Phys. Chem. 70, 954 (1966);71, 521, 4241 (1967).CrossRefGoogle Scholar
  19. 19.
    F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 627 (1974).CrossRefGoogle Scholar
  20. 20.
    F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 1099 (1974).CrossRefGoogle Scholar
  21. 21.
    K. M. Kale and R. Zana,J. Solution Chem. 6, 733 (1977).CrossRefGoogle Scholar
  22. 22.
    R. Zana, G. Perron, and J. E. Desnoyers,J. Solution Chem. 8, 729 (1979).CrossRefGoogle Scholar
  23. 23.
    R. Zana, G. A. Lage, and C. M. Criss,J. Solution Chem. 9, 667 (1980).CrossRefGoogle Scholar
  24. 24.
    R. Zana, J. E. Desnoyers, G. Perron, R. L. Kay, and K. Lee,J. Phys. Chem. 86, 3996 (1982).CrossRefGoogle Scholar
  25. 25.
    F. J. Millero,J. Phys. Chem. 75, 280 (1971).CrossRefGoogle Scholar
  26. 26.
    B. E. Conway, J. E. Desnoyers, and R. E. Verrall,Trans. Faraday Soc. 62, 2738 (1966).CrossRefGoogle Scholar
  27. 27.
    B. E. Conway, J. E. Desnoyers, and R. E. Verrall,J. Phys. Chem. 75, 3031 (1971).CrossRefGoogle Scholar
  28. 28.
    C. Jolicoeur, P. R. Philip, G. Perron, P. A. Leduc, and J. E. Desnoyers,Canad. J. Chem. 50, 316 (1972).CrossRefGoogle Scholar
  29. 29.
    E. J. King,J. Phys. Chem. 74 4590 (1970).CrossRefGoogle Scholar
  30. 30.
    P. Mukerjee,J. Phys. Chem. 65, 740, 744 (1961).CrossRefGoogle Scholar
  31. 31.
    K. Uosaki, Y. Kondo, and N. Tokura,Bull. Chem. Soc. Japan 45, 871 (1972).CrossRefGoogle Scholar
  32. 32.
    Y. Marcus,Pure Appl. Chem 58, 1721 (1986).CrossRefGoogle Scholar
  33. 33.
    Y. Marcus,J. Chem. Soc. Faraday Trans. 89, 713 (1993).CrossRefGoogle Scholar
  34. 34.
    J. E. Huheey, E. A. Keiter, and R. L. Keiter,Inorganic Chemistry, 4th edn., (Harper, New York, 1993, p 292).Google Scholar
  35. 36.
    Y. Marcus and A. Loewenschuss,J. Chem. Soc. Faraday Trans. I 82, 993 (1986).CrossRefGoogle Scholar
  36. 37.
    R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn., (Butterworths, London, 1970).Google Scholar
  37. 38.
    J. Barthel and R. Neueder,Electrolyte Data Collection, Chemistry Data Series, Vol. XII, Part 1, (Dechema, Berlin, 1992).Google Scholar
  38. 39.
    J. Barthel and R. Neueder,Electrolyte Data Collection, Chemistry Data Series, Vol. XII, Part la, (Dechema, Berlin, 1993).Google Scholar
  39. 40.
    J. Barthel, L. Iberl, J. Rossmaier, H.-J. Gores, and B. Kaukal,J. Solution Chem. 19, 321 (1990).CrossRefGoogle Scholar
  40. 41.
    P. M. McDonaugh and J. F. Reardon,J. Solution Chem. 19, 301 (1990).CrossRefGoogle Scholar
  41. 42.
    B. S. Krumgalz and J. Barthel,Z Phys. Chem. N.F. 142, 167 (1984).Google Scholar
  42. 43.
    B. S. Krumgalz,J. Chem. Soc. Faraday Trans. 79, 571 (1983).Google Scholar
  43. 44.
    Y. Marcus and G. T. Hefter,J. Chem. Soc. Faraday Trans. 92, 757 (1996).CrossRefGoogle Scholar
  44. 45.
    D. Bax, C. L. de Ligny, and M. Alfenaar,Rec. Trav. Chim. Pays-Bas,91, 453 (1972).Google Scholar
  45. 46.
    J. I. Kim,J. Phys. Chem. 82, 191 (1978).CrossRefGoogle Scholar
  46. 47.
    A. Bondi,J. Phys. Chem. 68, 441 (1964).CrossRefGoogle Scholar
  47. 48.
    A. J. Pasztor and C. M. Criss,J. Solution Chem. 7, 27 (1978).CrossRefGoogle Scholar
  48. 49.
    R. N. French and C. M. CrissJ. Solution Chem. 11, 625 (1982).CrossRefGoogle Scholar
  49. 50.
    C. Shin and C. M. Criss,J. Solution Chem. 15, 307 (1986).CrossRefGoogle Scholar
  50. 51.
    I. L. Kozlov and N. P. Novoselov,Russ. J. Phys. Chem. 62, 112 (1988).Google Scholar
  51. 52.
    L. G. Hepler,J. Phys. Chem. 61, 1426 (1957).CrossRefGoogle Scholar
  52. 53.
    Y. Marcus,Rev. Anal. Chem. 5, 53 (1981).Google Scholar
  53. 54.
    C. Jolicoeur and J.-C. Mercier,J. Phys. Chem. 81, 1119 (1977).CrossRefGoogle Scholar
  54. 55.
    R. L. Kay,Faraday Disc. Chem. Soc. 64, 252 (1978).Google Scholar
  55. 56.
    T. M. Letcher, J. J. Paul and R. L. Kay,J. Solution Chem. 20, 1001 (1991).CrossRefGoogle Scholar
  56. 57.
    S. Glikberg and Y. Marcus,J. Solution Chem. 12, 255 (1983).CrossRefGoogle Scholar
  57. 58.
    N. Softer, M. Bloemendal, and Y. Marcus,J. Chem. Eng. Data,33, 43 (1988).CrossRefGoogle Scholar
  58. 59.
    R. Gopal, D. Agarwal, and R. Kumar,Bull. Chem. Soc. Japan 46, 1973 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Glenn Hefter
    • 1
  • Yizhak Marcus
    • 1
  1. 1.Department of ChemistryMurdoch UniversityWestern AustraliaAustralia

Personalised recommendations