Plasma Chemistry and Plasma Processing

, Volume 17, Issue 1, pp 39–57 | Cite as

Investigation of the low-pressure plasma-chemical conversion of fluorocarbon waste gases

  • F. W. Breitbarth
  • D. Berg
  • K. Dumke
  • H. -J. Tiller


The kinetics of the plasma-chemical conversion of a number of saturated, as well as of unsaturated, fluorocarbon compounds is studied in an oxygen-based rf discharge by FTIR spectroscopy. Unsaturated fluorocarbons are rapidly converted into CF4 and C2F6, which, in the presence of silica walls, are finally converted quantitatively into SiF4 (etch reaction). The results of this investigation are used to design a plasma-chemical reactor for the conversion of fluorocarbon exhaust gases into SiF4 in the vacuum line of a technological low-pressure plasma reactor. Furthermore, it is shown that the primary conversion product SiF4 can be effectively converted into CaF2 in a heterogeneous reaction with a CaO/Ca(OH)2 absorber, also in the low-pressure line of the pumping system.

Key Words

Waste gas conversion fluorocarbon compounds low-pressure plasma decomposition kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refer ences

  1. 1.
    J. W. Clayton, Jr.,Fluorine Chem. Rev. 1, 225 (1967).Google Scholar
  2. 2.
    Proceedings of the Workshop on Atmospheric Effects. “Origins and options for two potent greenhouse gases: CF4 and C2F6,” April 21–22, 1993, Washington, DC.Google Scholar
  3. 3.
    Intergovernmental Panel on Climate Change (IPCC), “Climate Change 1992: The Supplementary Report on the IPCC Scientific Assessment,” Cambridge University Press (1992).Google Scholar
  4. 4.
    F. W. Breitbarth, H.-J. Tiller, and K. Dumke, Proc. of ISPC-11, J. Harry, ed., Loughborough, England, Vol. 2 (1993), p. 728.Google Scholar
  5. 5.
    Charles J. Pouchert, ed., Aldrich Library of IF spectra, edition I, Vol. 3.Google Scholar
  6. 6.
    P. L. Hanst and S. T. Hanst, “Infrared spectra for quantitative analysis of gases,” Infrared Analysis Inc., Anaheim, California 92801.Google Scholar
  7. 7.
    M. J. Hepper, J. W. Russell, and J. Overend,J. Chem. Phys. 48, 3765 (1968).CrossRefADSGoogle Scholar
  8. 8.
    P. N. Schatz and D. F. Hornig,J. Chem. Phys. 21, 1516 (1953).CrossRefADSGoogle Scholar
  9. 9.
    M. Meyer, I. Weber, R. Sieler, and H. Hobert,Jenaer Rundschau 35, 16 (1990).Google Scholar
  10. 10.
    H.-J. Tiller, F.-W. Breitbarth, D. Berg, and R. Kriegel, Proc. of ISPC-11, J. Harry, ed., Loughborough, England, Vol. 2 (1993), p. 689.Google Scholar
  11. 11.
    J. R. Nielsen, H. H. Claassen, and D. C. Smith,J. Chem. Phys. 18, 812 (1950).CrossRefADSGoogle Scholar
  12. 12.
    J. M. Mills, W. B. Pearson, J. R. Sherer, and B. Crowford,J. Chem. Phys. 28, 851 (1958).CrossRefADSGoogle Scholar
  13. 13.
    J. R. Nielsen, H. H. Claassen, and D. C. Smith,J. Chem. Phys. 20, 1916 (1952).CrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • F. W. Breitbarth
    • 1
  • D. Berg
    • 1
  • K. Dumke
    • 1
  • H. -J. Tiller
    • 1
  1. 1.Institute of Physical ChemistryFriedrich-Schiller-UniversityJenaGermany

Personalised recommendations