Journal of Insect Behavior

, Volume 10, Issue 1, pp 145–163 | Cite as

Motion parallax as a source of distance information in locusts and mantids

  • Karl Kral
  • Michael Poteser
Article

Abstract

This review article is devoted to results on distance measurement in locusts (e.g., Wallace, 1959; Collett, 1978; Sobel, 1990) and mantids. Before locusts or mantids jump toward a stationary object, they perform characteristic pendulum movements with the head or body, called peering movements, in the direction of the object. The fact that the animals over- or underestimate the distance to the object when the object is moved with or against the peering movement, and so perform jumps that are too long or short, would seem to indicate that motion parallax is used in this distance measurement. The behavior of the peering parameters with different object distances also indicates that not only retinal image motion but also the animal’s own movement is used in calculating the distance.

Key words

locusts mantids spatial vision distance estimation peering motion parallax 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum, H., and Wiedemann, I. (1962). Versuche über den Strahlengang im Insektenauge.Z. Naturforsch. 17b: 480–482.Google Scholar
  2. Barros-Pita, J. C., and Maldonado, H. (1970). A fovea in the praying mantis eye. II. Some morphological characteristics.Z. Vergl. Physiol. 67: 79–92.CrossRefGoogle Scholar
  3. Chapman, R. F. (1955). A laboratory study of roosting behaviour in hoppers of the African migratory locust,Locusta migratoria migratorioides.Anti-Locust Bull. 19: 1–40.Google Scholar
  4. Cloarec, A. (1986). Distance and size discrimination in a water stick insect,Ranatra linearis (Heteroptera).J. Exp. Biol. 120: 59–77.Google Scholar
  5. Collett, T. S. (1978). Peering—a locust behavior pattern for obtaining motion parallax information.J. Exp. Biol. 76: 237–241.Google Scholar
  6. Collett, T. S. (1987). Binocular depth vision in arthropods.TINS 10: 1–2.Google Scholar
  7. Collett, T. S., and Paterson, C. J. (1991). Relative motion parallax and target localisation in the locust,Schistocerca gregaria.J. Comp. Physiol. A 169: 616–621.CrossRefGoogle Scholar
  8. Demoll, R. (1909). Über die Beziehungen zwischen der Ausdehnung des binokularen Sehraumes und dem Nahrungserwerb bei einigen Insekten.Zool. Jb. Syst. 28: 523–530.Google Scholar
  9. Ellis, P. E. (1953). Social aggregation and gregarious behaviour in hoppers ofLocusta migratoria migratorioides.Behaviour 5: 225–260.Google Scholar
  10. Eriksson, E. S. (1980). Movement parallax and distance perception in the grasshopperPhaulacridium vittatum (Sjöstedt).J. Exp. Biol. 86: 337–341.Google Scholar
  11. Eriksson, E. S. (1985). Attack behaviour and distance perception in the australian bulldog antMyrmecia nigriceps.J. Exp. Biol. 119: 115–131.Google Scholar
  12. Goulet, M., Chapman, R., and Lambin, M. (1991). The visual perception of relative distances in the wood-cricket,Nemobius silvestris.Physiol. Entomol. 6: 357–367.Google Scholar
  13. Helmholtz, H. v. (1966).Handbuch der Physiologischen Optik, Voss, Hamburg.Google Scholar
  14. Horridge, G. A. (1977). Insects which turn and look.Endeavour 1: 7–17.CrossRefGoogle Scholar
  15. Horridge, G. A. (1986). A theory of insect vision: velocity parallax.Proc. R. Soc. Lond. B. 229: 13–27.Google Scholar
  16. Horridge, G. A. (1987). The evolution of visual processing and the construction of seeing systems.Proc. R. Soc. Lond. B 230: 279–292.PubMedGoogle Scholar
  17. Horridge, G. A., and Duelli, P. (1979). Anatomy of the regional differences in the eye of the mantisCiulfina.J. Exp. Biol. 80: 165–190.Google Scholar
  18. Huber, A. (1961). Zur Biologie vonMellinus arvensis.Zool. Jb. Syst. 89: 43–118.Google Scholar
  19. Jeanrot, N., Campan, R., and Lambin, M. (1981). Functional exploration of the visual field of the wood-cricket,Nemobius sylvestris.Physiol. Entomol. 6: 27–34.Google Scholar
  20. Kennedy, J. S. (1945). Observations on the mass migration of desert locust hoppers.Trans. R. Entomol. Soc. Lond. 95: 247–262.Google Scholar
  21. Köck, A., Jakobs, A.-K., and Kral, K. (1993). Visual prey discrimination in monocular and binocular praying mantisTenodera sinensis during postembryonic development.J. Insect Physiol. 39: 485–491.CrossRefGoogle Scholar
  22. Lambin, M. (1984). Description des mouvements “oculaires” de la tete pendant la fixation visuelle chez un insecte.Biol. Behav. 9: 307–319.Google Scholar
  23. Land, M. F. (1981). Optics and vision in invertebrates. In Autrum, H.,et al. (eds.),Handbook of Sensory Physiology, VII/6B, Springer-Verlag, Berlin, Heidelberg, New York, pp. 471–592.Google Scholar
  24. Leitinger, G. (1994).Frühe postembryonale Entwicklung des Komplexauges und der Lamina gangionaris der Gottesanbeterin nach Photodegeneration der akuten Zone mit Sulforhodamin, Master thesis, University Graz, Graz.Google Scholar
  25. Leitinger, G., Pabst, M.-A., and Kral, K. (1994). Foveale Applikation von Sulforhodamin hat strukturelle Auswirkungen auf die postembryonale Entwicklung des Komplexauges der Gottesanbeterin.Verh. Deut. Zool. Ges. 87: 252.Google Scholar
  26. Liske, E., and Mohren, W. (1984). Saccadic head movements of the praying mantis, with particular reference to visual and proprioreceptive information.Physiol. Entomol. 9: 29–38.Google Scholar
  27. Maldonado, H., and Barros-Pita, J. C. (1970). A fovea in the praying mantis eye. I. Estimation of the catching distance.Z. Vergl. Physiol. 67: 58–78.CrossRefGoogle Scholar
  28. Mittelstaedt, H. (1957). Prey capture in mantids. In Scheer, B. T.,et al. (eds.),Recent Advances in Invertebrate Physiology, University of Oregon Publication, pp. 51–71.Google Scholar
  29. Pfaff, M., and Varjú, D. (1991). Mechanisms of visual distance perception in the hawk mothMacroglossum stellatarum.Zool. Jb. Physiol. 95: 315–321.Google Scholar
  30. Poteser, M. (1995).Die Rolle der Eigenbewegung der Gottesanbeterin Polyspilota sp.bei der Entfernungsmessung zu stationären Objekten im Verlauf der postembryonalen Entwicklung, Master thesis, University Graz, Graz.Google Scholar
  31. Poteser, M., and Kral, K. (1995). Visual distance discrimination between stationary targets in praying mantis: An index of the use of motion parallaxJ. Exp. Biol. 198: 2127–2137.PubMedGoogle Scholar
  32. Rossel, S. (1979). Regional differences in photoreceptor performance in the eye of the praying mantis.J. Comp. Physiol. 131: 95–112.CrossRefGoogle Scholar
  33. Rossel, S. (1983a). Binocular stereopsis in an insect.Nature 302: 821–822.CrossRefGoogle Scholar
  34. Rossel, S. (1983b). Binocular vision in the praying mantis.Experientia 39: 640.Google Scholar
  35. Rossel, S. (1986). Binocular spatial localization in the praying mantis.J. Exp. Biol. 120: 265–281.Google Scholar
  36. Sobel, E. C. (1990a). The locust’s use of motion parallax to measure distance.J. Comp. Physiol. 167: 579–588.CrossRefGoogle Scholar
  37. Sobel, E. C. (1990b). Depth perception by motion parallax and paradoxical parallax in locust.Naturwissenschaften 77: 241–243.PubMedCrossRefGoogle Scholar
  38. Srinivasan, M. V., Lehrer, M., Kirchner, W., and Zhang, S. W. (1991). Range perception through apparent image speed in freely-flying honeybees.Visual Neurosci. 6: 519–535.CrossRefGoogle Scholar
  39. von Holst, E. (1969).Zur Verhaltensphysiologie bei Tieren und Menschen, R. Piper & Co. Verlag, München.Google Scholar
  40. Walcher, F., and Kral, K. (1994). Visual deprivation and distance estimation in the praying mantis larvae.Physiol. Entomol. 19: 230–240.Google Scholar
  41. Wallace, G. K. (1958). Some experiments on form perception in the nymphs of the desert locustSchistocerca gregaria Forskål.J. Exp. Biol. 35: 765–775.Google Scholar
  42. Wallace, G. K. (1959). Visual scanning in the desert locustSchistocerca gregaria Forskål.J. Exp. Biol. 36: 512–525.Google Scholar
  43. Weismann, R. (1937). Die Orientierung der Kirschfliege (Rhagoletis cerasi) bei der Eiablage.Landw. Jb. Schweiz 51: 1080–1109.Google Scholar
  44. Zänkert, A. (1939). Vergleichend-morphologische und physiologisch-funktionelle Untersuchungen an Augen beutefangender Insekten.Sitzg. Ges. Naturforsch. Freunde Berlin 1–3: 82–169.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Karl Kral
    • 1
  • Michael Poteser
    • 1
  1. 1.Institut für ZoologieKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations