Advertisement

Journal of Insect Behavior

, Volume 10, Issue 5, pp 639–653 | Cite as

The effects of calling song spacing and intensity on the attraction of flying crickets (orthoptera: Goryllidae: Nemobiinae)

  • H. E. Farris
  • T. G. Forrest
  • R. R. Hoy
Article

Abstract

Previous studies have shown that sexually signaling males across different taxa show stereotyped spacing behavior that may be related to aspects of their signals, such as intensity. However, few studies have shown that the separation between signaling males affects their relative attractiveness. Using two sound traps broadcasting the calling song of the cricketEunemobius carolinus, we show that the separation, relative intensity, and absolute intensity of the calling songs influence calling song attractiveness. For calling songs separated by 5 m, the proportion of individuals attracted to the higher intensity song increased as the relative intensity difference of the two songs increased from 3 to 6 dB. For calling songs that differed by 6 dB, relative attraction to the less intense song decreased with decreasing song separation. These two results are consistent with the predictions of a model (Forrest and Raspet, 1994) that suggests that dense spacing is more costly for less powerful singers and that this cost increases with increasing differences in relative intensity. When the relative intensity of the songs was held constant (6 dB), we found that discrimination between songs decreases as the song absolute intensity increases. In particular, a greater proportion of individuals was attracted to the high-intensity song when the songs were broadcast at 103 and 97 dB than when the songs were broadcast at 109 and 103 dB. Unlike mammals and birds, the ability ofE. carolinus to discriminate between songs that differ in intensity may decrease as the absolute intensity increases. This may mean that females are less discriminating when they are closer to singing males.

Key words

cricket mate choice Eunemobius carolinus Nemobiinae male spacing mating aggregation intensity discrimination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R. D. (1975). Natural selection and specialized chorusing behavior in acoustic insects. In Pimentel, D. (ed.),Insects, Science and Society, Academic Press, New York, pp. 35–77.Google Scholar
  2. Arak, A., and Eiriksson, T. (1992). Choice of singing sites by male bushcrickets (Tettigonia viridissima) in relation to signal propagation.Behav. Ecol. Sociobiol. 30: 365–372.CrossRefGoogle Scholar
  3. Arak, A., Eiriksson, T., and Radesater, T. (1990). The adaptive significance of acoustic spacing in male bushcricketsTettigonia viridissima: A perturbation experiment.Behav. Ecol. Sociobiol. 26: 1–7.CrossRefGoogle Scholar
  4. Bailey, W. J. (1985). Acoustic cues for female choice in bushcrickets (Tettigoniidae). In Kalmring, K., and Elsner, N. (eds.),Acoustic and Vibrational Communication in Insects, Verlag Paul Parey, Berlin, pp. 101–110.Google Scholar
  5. Bailey, W. J., and Thiele, D. R. (1983). Male spacing behaviour in the Tettigoniidae: An experimental approach. In Gwynne, D. T., and Morris, G. K. (eds.),Orthopteran Mating Systems, Westview Press, Boulder, CO, pp. 163–184.Google Scholar
  6. Bidochka, M. J., and Snedden, W. A. (1985). Effect of nuptial feeding on the mating behaviour of female ground crickets.Can. J. Zool. 63: 207–208.Google Scholar
  7. Brown, W. D., Wideman, J., Andrade, M. C. B., Mason, A. C., and Gwynne, D. T. (1996). Female choice for an indicator of male size in the song of the black-horned tree cricket,Oecanthus nigricornis (Orthoptera: Gryllidae: Oecanthinae).Evolution 50: 2400–2411.CrossRefGoogle Scholar
  8. Cade, W. (1979). Alternative male strategies: Genetic differences in crickets.Science 212: 563–564.CrossRefGoogle Scholar
  9. Cade, W. (1981). Field cricket spacing, and the phonotaxis of crickets and parasitoid flies to clumped and isolated cricket calling songs.Z. Tierpsychol. 55: 365–375.Google Scholar
  10. Cade, W., and Cade, E. S. (1992). Male mating success, calling and searching behaviour at high and low densities in the field cricket,Gryllus integer.Anim. Behav. 43: 49–56.CrossRefGoogle Scholar
  11. Doolan, J. M. (1981). Male spacing and the influence of female courtship behaviour in the bladder cicada,Cystosoma saundersii Westwood.Behav. Ecol. Sociobiol. 9: 269–276.CrossRefGoogle Scholar
  12. Fay, R. R. (1988).Hearing in Vertebrates: A Psychophysics Databook, Hill-Fay Associates, Winnetka, IL.Google Scholar
  13. Forrest, T. G. (1983). Calling song and mate choice in mole crickets. In Gwynne, D. T., and Morris, G. K. (eds.),Orthopteran Mating Systems, Westview Press, Boulder, CO, pp. 185–204.Google Scholar
  14. Forrest, T. G. (1991). Power output and efficiency of sound production by crickets.Behav. Ecol. 4: 327–338.CrossRefGoogle Scholar
  15. Forrest, T. G. (1994). From sender to receiver: Propagation and environmental effects on acoustic signals.Am. Zool. 34: 644–654.Google Scholar
  16. Forrest, T. G., and Green, D. (1991). Sexual selection and female choice in mole crickets (Scapteriscus: Gryllotalpidae): Modeling the effects of intensity and male spacing.Bioacoustics 3: 93–109.Google Scholar
  17. Forrest, T. G., and Raspet, R. (1994). Models of female choice in acoustic communication.Behav. Ecol. 5: 293–303.CrossRefGoogle Scholar
  18. Forrest, T. G., Sylvester, T. L., Jr., Testa, S., III, Smith, S. M., Dinep, A., Cupit, T. L., Huggins, J. M., Atkins, K. L., and Eubanks, M. (1991). Mate choice in ground crickets (Gryllidae: Nemobiinae).Fla. Entomol. 74: 74–80.CrossRefGoogle Scholar
  19. Gerhardt, Y. C. (1987). Evolutionary and neurobiological implication of selective phonotaxis in the green treefrog,Hyla cinerea. Anim. Behav.35: 1479–1489.CrossRefGoogle Scholar
  20. Green, D. M. (1976).An Introduction to Hearing, Wiley & Sons, New York.Google Scholar
  21. Greenfield, M. D., and Shelly, T. E. (1985). Alternative mating strategies in a desert grasshopper: Evidence of density-dependence.Anim. Behav. 33: 1192–1210.CrossRefGoogle Scholar
  22. Gwynne, D. T. (1982). Male selection by female katydids (Orthoptera, Tettigoniidae:Conocephalus nigropleurum).Anim. Behav. 30: 734–738.CrossRefGoogle Scholar
  23. Gwynne, D. T. (1984). Courtship feeding increases female reproductive success in bushcrickets.Nature 307: 362–363.CrossRefGoogle Scholar
  24. Latimer, W., and Schatral, A. (1986). Information cues used in male competition byTettigonia cantans (Orthoptera: Tettigoniidae).Anim. Behav. 34: 162–168.CrossRefGoogle Scholar
  25. Mays, D. L. (1971). Mating behavior of nemobiine crickets:Hygronemobius, Nemobius andPteronemobius (Orthoptera: Gryllidae).Fla. Entomol. 54: 113–126.CrossRefGoogle Scholar
  26. Moiseff, A., Pollack, G. S., and Hoy, R. R. (1978). Steering responses of flying crickets to sound and ultrasound: Mate attraction and predator avoidance.Proc. Natl. Acad. Sci. USA 75: 4052–4056.PubMedCrossRefGoogle Scholar
  27. Morris, G. K., Kerr, G. E., and Fullard, J. H. (1978). Phonotactic preferences of female meadow katydids (Orthoptera: Tettigoniidae:Conocephalus nigropleurum).Can. J. Zool. 56: 1479–1487.CrossRefGoogle Scholar
  28. Pollack, G. S., and Plourde, N. (1982). Directionality of acoustic orientation in flying crickets.J. Comp. Physiol. 146: 207–215.CrossRefGoogle Scholar
  29. Robertson, J. G. M. (1984). Acoustic spacing by breeding males ofUperoleia rugosa (Anura: Leptodactylidae).Z. Tierpsychol. 64: 283–297.Google Scholar
  30. Römer, H., and Bailey, W. J. (1986). Insect hearing in the field. II. Male spacing behaviour and correlated acoustic cues in the bushcricketMygalopsis marki.J. Comp. Physiol. 159: 627–638.CrossRefGoogle Scholar
  31. Schatral, A., and Latimer, W. (1988). A field study on the acoustic behavior of mobile singers in the bush cricketPsorodonotus illyricus, J. Nat. Hist. 22: 297–312.CrossRefGoogle Scholar
  32. Schatral, A., Latimer, W., and Broughton, B. (1984). Spatial dispersion and agonistic contacts of male bush crickets in the biotope.Z. Tierpsychol. 65: 201–214.Google Scholar
  33. Schatral, A., Latimer, W., and Kalmring, K. (1985). The role of the song for spatial dispersion and agonistic contacts in male bushcrickets. In Kalmring, K., and Elsner, N. (eds.),Acoustic and Vibrational Communication in Insects, Verlag Paul Parey, Berlin, pp. 111–116.Google Scholar
  34. Schmitz, B. (1985). Phonotaxis inGryllus campestris L. (Orthoptera, Gryllidae) III. Intensity dependence of the behavioural performance and relative importance of tympana and spiracles in directional hearing,J. Comp. Physiol. A 156: 165–180.CrossRefGoogle Scholar
  35. Shelly, T. E., Greenfield, M. D., and Downum, K. R. (1987). Variation in host plant quality: Influences on the mating system of desert grasshopper.Anim. Behav. 35: 1200–1209.CrossRefGoogle Scholar
  36. Simmons, L. W. (1988). Male size, mating potential and lifetime reproductive success in the field cricket.Gryllus bimaculatus (De Geer).Anim. Behav. 36: 372–379.Google Scholar
  37. Stout, J. F., and McGhee, R. (1988). Attractiveness of the maleAcheta domesticus calling song to females II. The relative importance of syllable period, intensity, and chirp rate.J. Comp. Physiol. A 164: 277–287.CrossRefGoogle Scholar
  38. Thornhill, R., and Alcock, J. (1983).The Evolution of Insect Mating Systems, Harvard University Press, Cambridge, MA.Google Scholar
  39. Ulagaraj, S. M., and Walker, T. J. (1973). Phonotaxis of crickets in flight: Attraction of male and female crickets to male calling songs.Science 182: 1278–1279.PubMedCrossRefGoogle Scholar
  40. Wagner, W. E. (1996). Convergent song preferences between female field crickets and acoustically orienting parasitoid flies.Behav. Ecol. 7: 279–285.CrossRefGoogle Scholar
  41. Walker, T. J. (1982). Sound traps for sampling mole cricket flights (Orthoptera: Gryllotalpidae:Scapteriscus).Fla. Entomol. 65: 105–110.CrossRefGoogle Scholar
  42. Walker, T. J. (1983). Mating modes and female choice in short-tailed crickets (Anurogryllus arboreus) In Gwynne, D. T., and Morris, G. K. (eds.),Orthopteran Mating Systems, Westview Press, Boulder, CO, pp. 240–267.Google Scholar
  43. Walker, T. J., and Forrest, T. G. (1989). Mole cricket phonotaxis: Effects of intensity of synthetic calling song (Orthoptera: Gryllotalpidae:Scapteriscus acletus).Fla. Entomol. 72: 655–659.CrossRefGoogle Scholar
  44. Wilczynski, W., and Brenowitz, E. A. (1988). Acoustic cues mediate inter-male spacing in a neotropical frog.Anim. Behav. 36: 1054–1063.CrossRefGoogle Scholar
  45. Zar, J. H. (1984).Biostatistical Analysis, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • H. E. Farris
    • 1
    • 2
  • T. G. Forrest
    • 2
  • R. R. Hoy
    • 2
  1. 1.National Center for Physical AcousticsUniversity of MississippiUniversity
  2. 2.Section of Neurobiology and Behavior, S. G. Mudd HallCornell UniversityIthaca

Personalised recommendations