Israel Journal of Mathematics

, Volume 55, Issue 3, pp 257–266 | Cite as

A remark on regularization in Hilbert spaces

  • J. M. Lasry
  • P. L. Lions
Article

Abstract

We present here a simple method to approximate uniformly in Hilbert spaces uniformly continuous functions byC1,1 functions. This method relies on explicit inf-sup-convolution formulas or equivalently on the solutions of Hamilton-Jacobi equations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Barbu and G. Da Prato,Hamilton-Jacobi Equations in Hilbert Spaces, Pitman, London, 1983.MATHGoogle Scholar
  2. 2.
    M. G. Crandall and P. L. Lions,Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc.277 (1983), 1–42.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. G. Crandall and P. L. Lions, in preparation.Google Scholar
  4. 4.
    M. G. Crandall, L. C. Evans and P. L. Lions,Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc.282 (1984), 487–502.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    I. Ekeland and J. M. Lasry,On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface. Ann. Math.112 (1980), 238–319.MathSciNetCrossRefGoogle Scholar
  6. 6.
    P. L. Lions,Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London, 1982.MATHGoogle Scholar
  7. 7.
    A. S. Nemirovski and S. M. Semenov,The polynomial approximation of functions in Hilbert spaces, Mat. Sb. (N.S.)92 (134) (1973), 257–281.MathSciNetGoogle Scholar
  8. 8.
    A. Pommelet,Transformée de Toland et la théorie de Morse pour certaines fonctions non différentiables, Thèse de 3e cycle, Université Paris — Dauphine, 1984.Google Scholar

Copyright information

© Hebrew University 1986

Authors and Affiliations

  • J. M. Lasry
    • 1
  • P. L. Lions
    • 1
  1. 1.CeremadeUniversité Paris - DauphineParis Cedex 16France

Personalised recommendations