Israel Journal of Mathematics

, Volume 67, Issue 3, pp 287–290 | Cite as

On associative algebras satisfying the Engel condition

  • Aner Shalev


It is shown that every finitely generated associative algebra over a field of characteristicp>0 satisfying the Engel condition is Lie-nilpotent. It follows that the Engel condition is inherited from an algebraA to its group of units,U(A).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Am]
    S. A. Amitsur,On rings with identities, J. London Math. Soc.30 (1955), 464–470.MATHCrossRefMathSciNetGoogle Scholar
  2. [Ba]
    J. A. Bahturin,Lectures on Lie Algebras, Akademik-Verlag, Berlin, 1978.MATHGoogle Scholar
  3. [Br1]
    A. Braun,Lie rings and the Engel condition, J. Algebra31 (1974), 287–292.MATHCrossRefMathSciNetGoogle Scholar
  4. [Br2]
    A. Braun,The nilpotency of the radical in a finitely generated PI-ring, J. Algebra89 (1984), 375–396.MATHCrossRefMathSciNetGoogle Scholar
  5. [Co]
    P. M. Cohn,A non-nilpotent Lie ring satisfying the Engel condition and a non-nilpotent Engel group, Proc. Camb. Phil. Soc.51 (1955), 401–405.MATHGoogle Scholar
  6. [Gr]
    K. W. Gruenberg,Two theorems on Engel groups, Proc. Camb. Phil. Soc.49 (1953), 377–380.MATHMathSciNetCrossRefGoogle Scholar
  7. [GL]
    N. D. Gupta and F. Levin,On the Lie ideals of a ring, J. Algebra81 (1983), 225–231.MATHCrossRefMathSciNetGoogle Scholar
  8. [Hi]
    P. J. Higgins,Lie rings satisfying the Engel condition, Proc. Camb. Phil. Soc.50 (1954), 8–15.MATHMathSciNetGoogle Scholar
  9. [Ko1]
    A. I. Kostrikin,On the Burnside problem, Izv. Akad. Nauk SSSR, Ser. Mat.23, No. 1 (1959), 3–34.MATHMathSciNetGoogle Scholar
  10. [Ko2]
    A. I. Kostrikin,Around Burnside, Nauka, Moscow, 1986.MATHGoogle Scholar
  11. [Ra]
    Y. P. Razmyslov,On Lie algebras satisfying the Engel condition, Algebra and Logic10, No. 5 (1971), 21–29.MATHCrossRefMathSciNetGoogle Scholar
  12. [Ro]
    L. W. Rowen,Polynomial Identities in Ring Theory, Academic Press, New York, 1980.MATHGoogle Scholar
  13. [Ze]
    E. I. Zel’manov,On Engel Lie algebras, Sib. Mat. J.29, No. 5 (1988), 112–117.MathSciNetGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1989

Authors and Affiliations

  • Aner Shalev
    • 1
  1. 1.Institute of Mathematics and Computer SciencesThe Hebrew University of Jerusalem, Givat RamJerusalemIsrael

Personalised recommendations