Israel Journal of Mathematics

, Volume 32, Issue 2–3, pp 209–220 | Cite as

EmbeddingL1 in a Banach lattice

  • N. J. Kalton


We show that ifX is a Banach lattice containing no copy ofc0 and ifZ is a subspace ofX isomorphic toL1[0, 1] then (a)Z contains a subspaceZ0 isomorphic toL1 and complemented inX and (b)X contains a complemented sublattice isomorphic and lattice-isomorphic toL1.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Dor,On projections in L 1, Ann. Math.102 (1975), 463–474.CrossRefMathSciNetGoogle Scholar
  2. 2.
    P. Enflo and T. Starbird,Subspaces of L 1 isomorphic to L1, to appear in Studia Math.Google Scholar
  3. 3.
    W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri,Symmetric structures in Banach spaces, to appear.Google Scholar
  4. 4.
    N. J. Kalton,The endomorphisms of L p, 0≦p≦1, Indiana Univ. Math. J.27 (1978), 353–381.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    H. P. Lotz,The Radon-Nikodym property in Banach lattices, to appear.Google Scholar
  6. 6.
    H. P. Lotz and H. P. Rosenthal, to appear.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1979

Authors and Affiliations

  • N. J. Kalton
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations