Israel Journal of Mathematics

, Volume 32, Issue 2–3, pp 97–106

Polynomial maps with constant Jacobian

  • Michael Razar
Article

Abstract

It has been long conjectured that ifn polynomialsf1, …,fn inn variables have a (non-zero) constant Jacobian determinant then every polynomial can be expressed as a polynomial inf1, …,fn. In this paper, various extra assumptions (particularly whenn=2) are shown to imply the conclusion. These conditions are discussed algebraically and geometrically.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.S. Abhyankar and T. Moh,Puiseaux expansion and generalized Tschirnhausen transformation I, J. Reine Angew. Math.260 (1973), 47–83.MathSciNetGoogle Scholar
  2. 2.
    S.S. Abhyankar and T. Moh,Puiseaux expansion and generalized Tschirnhausen transformation II, J. Reine Angew. Math.261 (1973) 29–54.MathSciNetGoogle Scholar
  3. 3.
    S.S. Abhyankar and T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math.276 (1975), 148–166.MATHMathSciNetGoogle Scholar
  4. 4.
    L.A. Campbell,A condition for a polynomial map to be invertible, Math. Ann.205 (1973), 243–248.CrossRefMathSciNetGoogle Scholar
  5. 5.
    H.W.E. Jung,Über Ganze Birationale Transformationen der Ebene, J. Reine Angew. Math.184 (1942), 161–174.MATHMathSciNetGoogle Scholar
  6. 6.
    M. Nagata,On the Automorphism Group of k [x, y], Kinokianiya Book Store, Tokyo, 1972.Google Scholar
  7. 7.
    W. Van der Kulk,On polynomial rings in two variables, Nieuw Arch. Wisk. (3)I (1953), 33–41.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1979

Authors and Affiliations

  • Michael Razar
    • 1
  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations