Israel Journal of Mathematics

, Volume 67, Issue 1, pp 109–116

Axioms of determinacy and biorthogonal systems

  • Gilles Godefroy
  • Alain Louveau


If allΠn1 games are determined, every non-norm-separable subspaceX ofl(N) which is W* —Σn+1/1 contains a biorthogonal system of cardinality 20. In Levy’s model of Set Theory, the same is true of every non-norm-separable subspace ofl(N) which is definable from reals and ordinals. Under any of the above assumptions,X has a quotient space which does not linearly embed into 1(N).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Fabian and G. Godefroy,The dual of every Asplund space admits a projectional resolution of the identity, Studia Math.91 (1988), 141–151.MATHMathSciNetGoogle Scholar
  2. 2.
    C. Finet and G. Godefroy,Representable operators, big quotient spaces and applications, Contemp. Math.85 (1989), 87–110.MathSciNetGoogle Scholar
  3. 3.
    D. Gale and F. M. Stewart,Infinite games with perfect information, inContributions to the Theory of Games, Ann. Math. Studies28, Princeton, 1953.Google Scholar
  4. 4.
    G. Godefroy and M. Talagrand,Espaces de Banach représentables, Isr. J. Math.41 (1982), 321–330.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    K. Kunen,On hereditarily Lindelöf Banach spaces, manuscript, July 1980.Google Scholar
  6. 6.
    A. Levy,Definability in axiomatic set theory I, inLogic, Methodology and Philosophy of Science (Y. Bar-Hillel, ed.), North-Holland, Amsterdam, 1965, pp. 127–151.Google Scholar
  7. 7.
    J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces, Vol. 1,Sequence Spaces, Springer-Verlag, Berlin, 1977, p. 92.Google Scholar
  8. 8.
    A. Louveau,σ-idéaux engendrés par des ensembles fermés et théorèmes d’approximation, Trans. Am. Math. Soc.257 (1980), 143–170.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. I. Markushevich,On a basis in the wide sense for linear spaces, Dokl. Akad. Nauk SSSR41 (1943), 241–244.Google Scholar
  10. 10.
    Y. N. Moschovakis,Descriptive Set Theory, Studies in Logic, 100, North-Holland, Amsterdam, 1980.MATHGoogle Scholar
  11. 11.
    S. Negrepontis,Banach spaces and topology, inHandbook of Set-theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 1045–1142.Google Scholar
  12. 12.
    R. M. Solovay,A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math.92 (1970), 1–56.CrossRefMathSciNetGoogle Scholar
  13. 13.
    C. Stegall,The Radon-Nikodym property in conjugate Banach spaces, Trans. Am. Math. Soc.206 (1975), 213–223.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    G. A. Suarez,Some uncountable structures and the Choquet-Edgar property in non separable Banach spaces, Proc. of the 10th Spanish-Portugese Conf. in Math. III, Murcia, 1985, pp. 397–406.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1989

Authors and Affiliations

  • Gilles Godefroy
    • 1
  • Alain Louveau
    • 1
  1. 1.Centre National de la Recherche Scientifique and Equipe d’AnalyseUniversité Paris VIParis Cedex 05France

Personalised recommendations