Advertisement

Israel Journal of Mathematics

, Volume 51, Issue 4, pp 305–338 | Cite as

Classification of finite groups according to the number of conjugacy classes

  • Antonio Vera López
  • Juan Vera López
Article

Abstract

We consider the problem of the classification of finite groups according to the number of conjugacy classes through the classification of all the finite groups with many minimal normal subgroups.

Keywords

Normal Subgroup Finite Group Prime Number Conjugacy Class Nilpotent Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Aleksandrov and K. A. Komissarcik,Simple groups with a small number of conjugacy classes, inAlgorithmic Studies in Combinatorics (Russian), Nauka, Moscow, 1978, pp. 162–172, 187.Google Scholar
  2. 2.
    W. Burnside,Theory of Groups of Finite Order, 2nd edn., Dover, 1955.Google Scholar
  3. 3.
    A. R. Camina,Some conditions which almost characterize Frobenius group, Isr. J. Math.31 (1978), 153–160.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Chillag and I. D. Macdonald,Generalized Frobenius groups, Isr. J. Math.47 (1984), 111–122.zbMATHMathSciNetGoogle Scholar
  5. 5.
    M. J. Collins and B. Rickman,Finite groups admitting an automorphism with two fixed points, J. Algebra49 (1977), 547–563.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    W. Feit and J. Thompson,Finite groups which contain a self-centralizing subgroup of order three, Nagoya Math. J.21 (1962), 185–197.zbMATHMathSciNetGoogle Scholar
  7. 7.
    D. Gorenstein,Finite Groups, Harper and Row, New York, 1968.zbMATHGoogle Scholar
  8. 8.
    D. Gorenstein and K. Harada,Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Am. Math. Soc.147 (1974).Google Scholar
  9. 9.
    K. Harada,On finite groups having self-centralizing 2-subgroups of small order, J. Algebra33 (1975), 144–160.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    B. Huppert,Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.zbMATHGoogle Scholar
  11. 11.
    M. I. Kargapolov and Ju. I. Merzljakov,Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1976.Google Scholar
  12. 12.
    L. F. Kosvintsev,Over the theory of groups with properties given over the centralizers of involutions, Sverdlovsk (Ural.), Summary thesis Doct., 1974.Google Scholar
  13. 13.
    J. D. Macdonald,Some p-groups of Frobenius and extra-special type, Isr. J. Math.40 (1981), 350–364.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Mann,Conjugacy classes in finite groups, Isr. J. Math.31 (1978), 78–84.zbMATHCrossRefGoogle Scholar
  15. 15.
    F. M. Markell,Groups with many conjugate elements, J. Algebra26 (1973), 69–74.CrossRefMathSciNetGoogle Scholar
  16. 16.
    V. A. Odincov and A. I. Starostin,Finite groups with 9 classes of conjugate elements (Russian), Ural. Gos. Univ. Mat. Zap. 10, Issled Sovremen, Algebre,152 (1976), 114–134.MathSciNetGoogle Scholar
  17. 17.
    J. Poland,Finite groups with a given number of conjugate classes, Canad. J. Math.20 (1969), 456–464.MathSciNetGoogle Scholar
  18. 18.
    J. S. Rose,A Course on Group Theory, Cambridge Univ. Press, London, 1978.zbMATHGoogle Scholar
  19. 19.
    D. I. Sigley,Groups involving five complete sets of non-invariant conjugate operators, Duke Math.1 (1935), 477–479.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Suzuki,On finite groups containing an element of order 4 which commutes only with its own powers, Ann. Math.3 (1959), 255–271.zbMATHGoogle Scholar
  21. 21.
    J. G. Thompson,Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad. Sci. U.S.A.45 (1959), 578–581.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    A. Vera Lopez and J. Vera Lopez,Clasificación de grupos nilpotentes finitos según el número de clases de conjugación y el de normales minimales, Acta VIII J. Mat. Hisp-Lus. Coimbra1 (1981), 245–252.Google Scholar
  23. 23.
    A. Vera Lopez,Grupos finitos con un número pequeño de clases de conjugación fuera del socle, Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid (1983), to appear.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1985

Authors and Affiliations

  • Antonio Vera López
    • 1
  • Juan Vera López
    • 2
  1. 1.Departamento de Matemáticas, Facultad de CienciasUniversidad del Pais VascoBilbaoSpain
  2. 2.Instituto Nacional de Bachillerato, Cura Valera, Huercal-OveraAlmeriaSpain

Personalised recommendations