Advertisement

Israel Journal of Mathematics

, Volume 14, Issue 4, pp 390–408

# Acyclic colorings of planar graphs

• Branko Grünbaum
Article

## Abstract

A coloring of the vertices of a graph byk colors is called acyclic provided that no circuit is bichromatic. We prove that every planar graph has an acyclic coloring with nine colors, and conjecture that five colors are sufficient. Other results on related types of colorings are also obtained; some of them generalize known facts about “point-arboricity”.

## Keywords

Planar Graph Chromatic Number Outerplanar Graph Simple Circuit Distinguished Triangle
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
J. Bosák,Hamiltonian lines in cubic graphs, Proc. Int. Symp. Theory of Graphs (Rome 1966), P. Rosenstiehl (ed.), Gordon and Breach, New York; Dunod, Paris, 1967, pp. 35–46.Google Scholar
2. 2.
G. Chartrand, D. P. Geller and S. Hedetniemi,Graphs with forbidden subgraphs, J. Combinatorial Theory10 (1971), 12–41.
3. 3.
G. Chartrand and H. V. Kronk,The point-arboricity of planar graphs, J. London Math. Soc.44 (1969), 612–616.
4. 4.
G. Chartrand, H. V. Kronk and C. E. Wall,The point-arboricity of a graph, Israel J. Math.6 (1968), 169–175.
5. 5.
P. Erdös,Graph theory and probability, Canad. J. Math.11 (1959), 34–38.
6. 6.
P. Franklin,The four color problem, Amer. J. Math.44 (1922), 225–236.
7. 7.
H. Grötzsch,Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math. Natur. Reihe.8 (1958/59), 109–120.Google Scholar
8. 8.
B. Grünbaum,Grötzsch's theorem on 3-colorings, Michigan Math. J.10 (1963), 303–310.
9. 9.
B. Grünbaum,Convex Polytopes, Interscience, New York, 1967.
10. 10.
B. Grünbaum,A problem in graph coloring, Amer. Math. Monthly77 (1970), 1088–1092.
11. 11.
B. Grünbaum and H. Walther,Shortness exponents of families of graphs, J. Combinatorial Theory (to appear.)Google Scholar
12. 12.
S. Hedetniemi,On partitioning planar graphs, Canad. Math. Bull.11 (1968), 203–211.
13. 13.
A. Kotzig,Prispevok k teórii Eulerovských polyédrov, (Slovak. Russian summary) Mat. Časopis Sloven. Akad. Vied.5 (1955), 101–113.
14. 14.
H. V. Kronk,An analogue to the Heawood map-coloring problem, J. London Math. Soc. (2)1 (1969), 750–752.
15. 15.
H. V. Kronk and A. T. White,A 4-color theorem for toroidal graphs, Proc. Amer Math. Soc.34 (1972), 83–86.
16. 16.
H. Lebesgue,Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. (9)19 (1940), 27–43.
17. 17.
J. Lederberg,Hamilton circuits of convex trivalent polyhedra (up to 18 vertices), Am er Math. Monthly74 (1967), 522–527.
18. 18.
D. R. Lick,A class of point partition numbers, Recent Trends in Graph Theory, M. Capobianco et al. (eds.), Springer-Verlag, New York 1971, pp. 185–190.Google Scholar
19. 19.
D. R. Lick and A. T. White,The point partition numbers of closed 2-manifolds, J London Math. Soc. (2)4 (1972), 577–583.
20. 20.
T. S. Motzkin,Colorings, cocolorings, and determinant terms, Proc. Int. Symp. Theory of Graphs (Rome 1966), P. Rosenstiehl (ed.), Gordon and Breach, New York; Dunod, Paris, 1967, pp. 253–254.Google Scholar
21. 21.
O. Ore,The Four-Color Problem, Academic Press, New York 1967.
22. 22.
H. Sachs,Einführung in die Theorie der endlichen Graphen. Teil II, Teubner, Leipzig, 1972.Google Scholar
23. 23.
S. K. Stein,B-sets and coloring problems, Bull. Amer. Math. Soc.76 (1970), 805–806.
24. 24.
P. Wernicke,Über den kartographischen Vierfarbensatz, Math. Ann.58 (1904), 413–426.

## Copyright information

© Hebrew University 1973

## Authors and Affiliations

• Branko Grünbaum
• 1
1. 1.University of WashingtonSeattleU.S.A.