Principal homogeneous spaces for arbitrary Hopf algebras
- 332 Downloads
- 143 Citations
Abstract
LetH be a Hopf algebra over a field with bijective antipode,A a rightH-comodule algebra,B the subalgebra ofH-coinvariant elements and can:A ⊗ B A →A ⊗H the canonical map. ThenA is a faithfully flat (as left or rightB-module) Hopf Galois extension iffA is coflat asH-comodule and can is surjective (Theorem I). This generalizes results on affine quotients of affine schemes by Oberst and Cline, Parshall and Scott to the case of non-commutative algebras. The dual of Theorem I holds and generalizes results of Gabriel on quotients of formal schemes to the case of non-cocommutative coalgebras (Theorem II). Furthermore, in the dual situation, a normal basis theorem is proved (Theorem III) generalizing results of Oberst-Schneider, Radford and Takeuchi.
Keywords
Hopf Algebra Hopf Subalgebra Hopf Module Comodule Structure Principal Homogeneous SpacePreview
Unable to display preview. Download preview PDF.
References
- 1.R. J. Blattner,Induced and produced representations of Lie algebras, Trans. Am. Math. Soc.144 (1969), 457–474.CrossRefMathSciNetGoogle Scholar
- 2.E. Cline, B. Parshall and L. Scott,Induced modules and affine quotients, Math. Ann.230 (1977), 1–14.zbMATHCrossRefMathSciNetGoogle Scholar
- 3.E. C. Dade,Group-graded rings and modules, Math. Z.174 (1980), 241–262.zbMATHCrossRefMathSciNetGoogle Scholar
- 4.M. Demazure and P. Gabriel,Groupes algébriques, North-Holland, Amsterdam, 1970.zbMATHGoogle Scholar
- 5.Y. Doi,On the structure of relative Hopf modules, Commun. Algebra11 (1983), 243–255.zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Y. Doi,Algebras with total integrals, Commun. Algebra13 (1985), 2137–2159.zbMATHMathSciNetGoogle Scholar
- 7.Y. Doi and M. Takeuchi,Hopf-Galois extensions of algebras, the Miyashita-Ulbrich action, and Azumaya algebras, J. Algebra121 (1989), 488–516.zbMATHCrossRefMathSciNetGoogle Scholar
- 8.P. Gabriel,Etude infinitésimale des schémas en groupes — groupes formels, Exp. VIIB,Schémas en groupes I, Lecture Notes in Mathematics, No. 151, Springer, Berlin, Heidelberg, New York, 1970.Google Scholar
- 9.A. Grothendieck and J. Dieudonné,Eléments de géométrie algébrique, IV, Publ. Math.24 (1965).Google Scholar
- 10.L. Gruson and M. Raynaud,Critères de platitude et de projectivite, Invent. Math.13 (1971), 1–81.zbMATHCrossRefMathSciNetGoogle Scholar
- 11.M. Koppinen and T. Neuvonen,An imprimitivity theorem for Hopf algebras, Math. Scand.41 (1977), 193–198.MathSciNetGoogle Scholar
- 12.H. F. Kreimer,A note on the outer Galois theory of rings, Pacific J. Math.31 (1969), 417–432.zbMATHMathSciNetGoogle Scholar
- 13.H. F. Kreimer and M. Takeuchi,Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J.30 (1981), 675–692.zbMATHCrossRefMathSciNetGoogle Scholar
- 14.A Masuoka,On Hopf algebras with cocommutative coradicals, preprint, 1989.Google Scholar
- 15.J. W. Milnor and J. C. Moore,On the structure of Hopf algebras, Ann. of Math.81 (1965), 211–264.CrossRefMathSciNetGoogle Scholar
- 16.D. Mumford and J. Fogarty,Geometric Invariant Theory, Springer, Berlin, Heidelberg, New York, 1982.zbMATHGoogle Scholar
- 17.K. Newman,A correspondence between bi-ideals and sub-Hopf algebras in cocommutative Hopf algebras, J. Algebra36 (1975), 1–15.zbMATHCrossRefMathSciNetGoogle Scholar
- 18.U. Oberst and H.-J. Schneider,Untergruppen formeller Gruppen von endlichem Index, J. Algebra31 (1974), 10–44.zbMATHCrossRefMathSciNetGoogle Scholar
- 19.U. Oberst,Affine Quotientenschemata nach affinen, algebraischen Gruppen und induzierte Darstellungen, J. Algebra44 (1977), 503–538.zbMATHCrossRefMathSciNetGoogle Scholar
- 20.U. Oberst,Actions of formal groups on formal schemes. Applications to control theory and combinatorics, inSeminaire d’Algebre (P. Dubreil and M.-P. Malliavin, eds.), Lecture Notes in Mathematics, No. 1146, Springer, Berlin, Heidelberg, New York, 1985.Google Scholar
- 21.D. Radford,Pointed Hopf algebras are free over Hopf subalgebras, J. Algebra45 (1977), 266–273.zbMATHCrossRefMathSciNetGoogle Scholar
- 22.D. Radford,Freeness (projectivity) criteria for Hopf algebras over Hopf subalgebras, J. Pure Appl. Algebra11 (1977), 15–28.CrossRefMathSciNetGoogle Scholar
- 23.N. S. Rivano,Catégories tannakiennes, Lecture Notes in Mathematics, No. 265, Springer, Berlin, Heidelberg, New York, 1972.zbMATHGoogle Scholar
- 24.L. Rowen,Ring Theory, Volume I, Academic Press, Boston, 1988.zbMATHGoogle Scholar
- 25.H.-J. Schneider,Zerlegbare Untergruppen affiner Gruppen, Math. Ann.255 (1981), 139–158.zbMATHCrossRefMathSciNetGoogle Scholar
- 26.M. Sweedler,Hopf Algebras, Benjamin, New York, 1969.Google Scholar
- 27.M. Takeuchi,A correspondence between Hopf ideals and sub-Hopf algebras, Manuscr. Math.7 (1972), 251–270.zbMATHCrossRefGoogle Scholar
- 28.M. Takeuchi,A note on geometrically reductive groups, J. Fac. Sci., Univ. Tokyo, Sect. 1,20, No. 3 (1973), 387–396.zbMATHGoogle Scholar
- 29.M. Takeuchi,On extensions of formal groups by μ A, Commun. Algebra13 (1977), 1439–1481.CrossRefGoogle Scholar
- 30.M. Takeuchi,Formal schemes over fields, Commun. Algebra14 (1977), 1483–1528.CrossRefGoogle Scholar
- 31.M. Takeuchi,Relative Hopf modules — Equivalences and freeness criteria, J. Algebra60 (1979), 452–471.zbMATHCrossRefMathSciNetGoogle Scholar
- 32.K.-H. Ulbrich,Galoiserweiterungen von nicht-kommutativen Ringen, Commun. Algebra10 (1982), 655–672.zbMATHCrossRefMathSciNetGoogle Scholar
- 33.D. Voigt,Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen, Lecture Notes in Mathematics, No. 92, Springer, Berlin, New York, Heidelberg, 1977.zbMATHGoogle Scholar