Journal of Fluorescence

, Volume 7, Issue 1, pp 11–15 | Cite as

Fluorescence lifetime imaging of oxygen in living cells

  • H. C. Gerritsen
  • R. Sanders
  • A. Draaijer
  • C. Ince
  • Y. K. Levine


The usefulness of the fluorescent probe ruthenium tris(2,2′-dipyridyl) dichloride hydrate (RTDP) for the quantitative imaging of oxygen in single cells was investigated utilizing fluorescence lifetime imaging. The results indicate that the fluorescence behavior of RTDP in the presence of oxygen can be described by the Stem-Volmer equation. This shows that fluorescence quenching by oxygen is a dynamic quenching process. In addition, it was demonstrated that the fluorescence lifetime of RTDP is insensitive to pH, ion concentration, and cellular contents. This implies that a simple calibration procedure in buffers can be used to quantify oxygen concentrations within cells. First fluorescence imaging experiments on J774 macrophages show a nonuniform fluorescence intensity and a uniform fluorescence lifetime image. This indicates that the RTDP is heterogeneously partitioned throughout the cells, while the oxygen concentration is constant.

Key Words

Fluorescence lifetime imaging oxygen imaging confocal microscopy macrophages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. W. Kroneis and H. J. Matsoner (1983)Sensors Actuators 1, 587.Google Scholar
  2. 2.
    E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon (1991)Anal. Chem. 63, 337–342.CrossRefGoogle Scholar
  3. 3.
    M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, and O. S. Wolfbeis (1988)Anal. Chim. Acta 205, 1–6.CrossRefGoogle Scholar
  4. 4.
    O. S. Wolfbeis, L. J. Weis, M. J. P. Leiner, and W. E. Ziegler (1988)Anal. Chem. 60, 2028–2030.CrossRefGoogle Scholar
  5. 5.
    S. B. Bambot, R. Holavanahali, J. R. Lakowicz, G. M. Carter, and G. Rao (1994)Biotech. Bioeng. 43, 1139.CrossRefGoogle Scholar
  6. 6.
    J. R. Lakowicz (1983)Principles of Fluorescence Spectroscopy, Plenum Press, New York.Google Scholar
  7. 7.
    C. G. Morgan, A. C. Mitchell, and J. G. Murray (1990)Trans. Roy. Microsc. Soc. Micro 90, 463–466.Google Scholar
  8. 8.
    X. F. Wang, T. Uchida, D. M. Colaman, and S. Minami (1991)Appl. Spectrosc. 45, 360–366.CrossRefGoogle Scholar
  9. 9.
    J. R. Lakowicz, H. Szmacinski, and K. Nowaczyk (1992)Proc. Natl. Acad. Sci. USA 89, 1271–1275.PubMedCrossRefGoogle Scholar
  10. 10.
    E. P. Buurman, R. Sanders, A. Draaijer, H. C. Gerritsen, J. J. F. Van Veen, P. M. Houpt, and Y. K. Levine (1992)Scanning 14, 155–159.Google Scholar
  11. 11.
    A. Draaijer and P. M. Houpt (1988)Scanning 10, 139–145.Google Scholar
  12. 12.
    R. J. Woods, S. Scypinski, L. J. Cline Love, and H. A. Ashworth (1984)Anal. Chem. 56, 1395–1400.PubMedCrossRefGoogle Scholar
  13. 13.
    C. Ince, R. E. Beekman, and G. Verschagen (1990)J. Immunol. Methods 128, 227–234.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • H. C. Gerritsen
    • 1
  • R. Sanders
    • 1
    • 2
  • A. Draaijer
    • 2
  • C. Ince
    • 1
  • Y. K. Levine
    • 1
  1. 1.Department of Molecular BiophysicsUtrecht UniversityTA UtrechtThe Netherlands
  2. 2.TNOInstitute of Environmental Sciences, Group SensorsJA DelftThe Netherlands

Personalised recommendations