Journal of Statistical Physics

, Volume 89, Issue 5–6, pp 1061–1078 | Cite as

Phase Transitions of Single Semistiff Polymer Chains

  • Ugo Bastolla
  • Peter Grassberger


We study numerically a lattice model of semiflexible homopolymers with nearest neighbor (nn) attraction and energetic preference for straight joints between bonded monomers. For this we use a new Monte Carlo algorithm, the “prunedenriched Rosenbluth Method” (PERM). It is very efficient both for relatively open configurations at high temperatures and for compact and frozen-in low-T states. This allows us to study in detail the phase diagram as a function of nn attractionε and stiffnessx. It shows aθ-collapse line with a transition from open coils (smallε) to molten compact globules (largeε) and a freezing transition toward a state with orientational global order (large stiffnessx). Qualitatively this is similar to a recently studied mean-field theory [S. Doniach, T. Garel, and H. Orland (1996),J. Chem. Phys. 105(4), 1601], but there are important differences in details. In contrast to the mean-field theory and to naive expectations, theθ-temperatureincreases with stiffnessx. The freezing temperature increases even faster, and reaches theθ-line at a finite value ofx. For even stiffer chains, the freezing transition takes place directly, without the formation of an intermediate globular state. Although being in conflict with mean-field theory, the latter had been conjectured already by Doniachet al. on the basis of heuristic arguments and of low-statistics Monte Carlo simulations. Finally, we discuss the relevance of the present model as a very crude model for protein folding.

Key words

Polymers protein folding phase transitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. E. Creighton,Protein Folding (W.H. Freeman, New York, 1992).Google Scholar
  2. 2.
    S. Doniach, T. Garel, and H. Orland,J. Chem. Phys. 105:1601 (1996).CrossRefADSGoogle Scholar
  3. 3.
    P. G. De Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1988).Google Scholar
  4. 4.
    P. J. Flory,Proc. Roy. Soc. A 234:60 (1956).CrossRefADSGoogle Scholar
  5. 5.
    A. BaumgÄrtner and D. Y. Yoon,J. Chem. Phys. 79:521 (1983).CrossRefADSGoogle Scholar
  6. 6.
    D. Y. Yoon and A. BaumgÄrtner,Macromolecules 17:2864 (1984).CrossRefGoogle Scholar
  7. 7.
    A. BaumgÄrtner,J. Chem. Phys. 84(3):1905 (1986).CrossRefADSGoogle Scholar
  8. 8.
    A. Kolinski, J. Skolnick, and Y. Yaris,Procl. Natl. Acad. Sci. 83:7267 (1986).CrossRefADSGoogle Scholar
  9. 9.
    A. Kolinski, J. Skolnick, and Y. Yaris,J. Chem. Phys. 85:3585 (1986).CrossRefADSGoogle Scholar
  10. 10.
    M. L. Mansfield,Macromolecules 27:4699 (1994).CrossRefGoogle Scholar
  11. 11.
    A. Moskalenko, Yu. A. Kuznetsov, and K. A. Dawson,J. Phys. II France 7:409 (1997).CrossRefGoogle Scholar
  12. 12.
    P. Grassberger,Phys. Rev. E 56:3682 (1996).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    P. Grassberger, to be published (1997).Google Scholar
  14. 14.
    H. Frauenkron and P. Grassberger, preprint cond-mat/9707101 (1997).Google Scholar
  15. 15.
    P. Grassberger and R. Hegger,J. Chem. Phys. 102:6881 (1995).CrossRefADSGoogle Scholar
  16. 16.
    M. N. Rosenbluth and A. W. Rosenbluth,J. Chem. Phys. 23:356 (1955).CrossRefGoogle Scholar
  17. 17.
    J. Batoulis and K. Kremer,J. Phys. A 21:127 (1988).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    F. T. Wall and J. J. Erpenbeck,J. Chem. Phys. 30:634 (1959).CrossRefADSGoogle Scholar
  19. 19.
    P. P. Nidras and R. Brak,J. Phys. A 30:1457 (1997).zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    B. Li, N. Madras, and A. Sokal,J. Stat. Phys. 80:661 (1995).zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    R. Dickman,J. Chem. Phys. 87:2246 (1987).CrossRefADSGoogle Scholar
  22. 22.
    H. Frauenkron, U. Bastolla, P. Grassberger, E. Gerstner, and W. Nadler, preprint condmat/90705146(1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Ugo Bastolla
    • 1
  • Peter Grassberger
    • 1
  1. 1.HLRZJülichGermany

Personalised recommendations