Advertisement

Foundations of Physics Letters

, Volume 10, Issue 4, pp 357–370 | Cite as

Bradyon-luxon symmetry

  • V. Majerník
Article

Abstract

We propose a spacetime scheme representing the union of the real and non-real spacetime as a possible geometrical framework for Caldirola’s idea, that the bradyonic motion can be regarded as a light-like motion in an additional extra space. The playground of all physical processes is the union space. However, the physical processes in union space are differently projected on the real and non-real spacetime. The waves linked with luxons in union space are projected on the real spacetime so that they propagate here always with the velocity of light. The waves linked with bradyons in union space are projected on the non-real spacetime so that they propagate here with the velocity of light. The wave linked with a bradyon in union space, which is projected on the real spacetime, is here described by the Schroedinger and Dirac equations. There is proposed a symmetry which demands that the physical world is in its law the same whether it is seen from real or non-real spacetime. We discuss some consequences of this symmetry in the theory of elementary particles.

Key words

6-dimensional space Lorentz transformation Schroedinger equation gauge symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Hagston and I. D. Cox,Found. Phys. 15, 773 (1985),CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    V. Gorini,Comm. Math. Phys. 21, 150 (1971).zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    B. S. Rajput and O. P. S. Cox,Phys. Lett B 113, 183 (1982).CrossRefADSGoogle Scholar
  4. 4.
    I. S. Gradshtein and M. Ryzhik,Tables of Integrals, Series and Products (Academic, New York, 1980).Google Scholar
  5. 5.
    E. Jahnke, F. Emde and F. Lösch,Tafeln höhere Funktionen (Teubner. Stuttgart, 1960).Google Scholar
  6. 6.
    D. Iwanenko and A. Sokolow,Klassische Feldtheorie (Akademie, Berlin, 1953).zbMATHGoogle Scholar
  7. 7.
    W. H. Inskeep,Z. Naturforsch. 43a, 695 (1988).MathSciNetGoogle Scholar
  8. 8.
    J. D. Edmonds,Found. Phys. 3, (1973);8, 303 (1978).Google Scholar
  9. 9.
    H. C. Corben, E. Recami, ed., inTachyons, Monopols, and Related Topics (North-Holland, Amsterdam, 1978), p.31.Google Scholar
  10. 10.
    V. Majerník,Am. J. Phys. 54, 538 (1986).CrossRefADSGoogle Scholar
  11. 11.
    A. O. Barut,Phys. Lett. A 67, 67 (1978).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    O. M. Bilaniuk and E. C. G. Sudarshan,Nature 223, 386 (1969).CrossRefADSGoogle Scholar
  13. 13.
    H. Sallhofer,Z. Naturf. 43a, 1039 (1988).Google Scholar
  14. 14.
    A. A. Coley,Phys. Rev. D 38 2927 (1988).CrossRefADSGoogle Scholar
  15. 15.
    E. Schroedinger,Ann. Phys. (Leipzig) 79 (Ser.4), 489 (1926).ADSGoogle Scholar
  16. 16.
    E. Schroedinger,Ann. Phys. (Leipzig) 79, 277 (1911).Google Scholar
  17. 17.
    K. V. L. Sama,Int. J. Mod. Phys. A 10, 767 (1995).CrossRefADSGoogle Scholar
  18. 18.
    J. Bernabeu,Nucl. Phys. B 28, 1 (1992).Google Scholar
  19. 19.
    J. D. Vergados,Phys. Rep. 133, 1 (1988).CrossRefADSGoogle Scholar
  20. 20.
    J. Ellis,Phil. Trans. Roy. Soc. London A 304, 69 (1982).CrossRefADSGoogle Scholar
  21. 21.
    E. C. G. Sudarshan,Phys. Rev. D 1, 2473 (1970).MathSciNetGoogle Scholar
  22. 22.
    G. Feinberg,Phys. Rev. 159, 1089 (1967).CrossRefADSGoogle Scholar
  23. 23.
    V. S. Olkhovsky and E. Recami,Phys. Rep. 214, 339 (1992).CrossRefADSGoogle Scholar
  24. 24.
    V. S. Olkhovsky, E. Recami, F. Raciti, and A.K. Zaichenko,J. Phys. I. France 5, 1351 (1995).CrossRefGoogle Scholar
  25. 25.
    E. Recami and R. Mignani,Nuovo Cimento 4, 209 (1974).Google Scholar
  26. 26.
    E. Recami,Nuovo Cimento 9, N.6 (1986).Google Scholar
  27. 27.
    R. Mignani et al.,Lett. Nuovo Cimento 16, 449 (1976).CrossRefMathSciNetGoogle Scholar
  28. 28.
    E. A. Cole,Phys. Lett. A 75, 29 (1979);Phys. Lett. A 76, 371 (1980);J. Phys. A 13, 109 (1980);Nuovo Cimento A 60, 1 (1980);Nuovo Cimento B 85 105 (1985).CrossRefADSGoogle Scholar
  29. 29.
    A. O. Barut, G.D. Maccarrone, and E. Recami,Nuovo Cimento A 71, 509 (1982), and references therein.MathSciNetADSGoogle Scholar
  30. 30.
    J. D. Edmonds,Found. Phys. 8, 303 (1978).CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    J. L. Synge,Comm. Dublin Inst. Adv. Stud., Ser. A, No. 21 (1972).Google Scholar
  32. 32.
    I. L. Kantor and A. S. Solodownikov,Hyperkomplexe Zahlen (Teubner, Leipzig, 1978).zbMATHGoogle Scholar
  33. 33.
    K. Imaeda,Nuovo Cimento B 50, 271 (1979).MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    P. Caldirola and E. Recami,Epistologia (Geneva) 1, 263 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. Majerník
    • 1
    • 2
  1. 1.Department of Theoretical PhysicsPalacký UniversityOlomoucCzech Republic
  2. 2.Institute of Mathematics of the SlovakAcademy of SciencesBratislavaSlovak Republic

Personalised recommendations