Israel Journal of Mathematics

, Volume 37, Issue 1–2, pp 181–191 | Cite as

Un Nouveau ℓ (K) Qui Possede la Propriete de Grothendieck

  • Michel Talagrand


Using the continuum hypothesis, we construct a compact spaceK such that ℓ(K) possesses the Grothendieck property, but such that the unit ball of ℓ(K)′ does not containβ N, and hence, in particular, such thatl (N) is neither a subspace nor quotient of ℓ(K). In particular,K does not contain a convergent sequence but does not containβ N.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Haydon,On dual L 1 -spaces and injective bidual Banach spaces, Israel J. Math.31 (1978), 142–152.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Haydon, A non-reflexive Grothendieck space which does not containl , à paraître dans Israel J. Math.Google Scholar
  3. 3.
    M. I. Kadec and A. Pelczynski,Bases, lacunary sequences and complemented subspaces in the space L p, Studia Math.21 (1962), 161–176.zbMATHMathSciNetGoogle Scholar
  4. 4.
    A. Pelczynski,Banach spaces on which every unconditionally converging operation is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.10 (1962), 641.zbMATHMathSciNetGoogle Scholar
  5. 5.
    H. P. Rosenthal,On relatively disjoint families of measures, with some applications to Banach Space theory, Studia Math.37 (1970), 13–36.zbMATHMathSciNetGoogle Scholar
  6. 6.
    G. L. Seever,Measures on F-spaces, Trans. Amer. Math. Soc.133 (1968), 267–280.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1980

Authors and Affiliations

  • Michel Talagrand
    • 1
  1. 1.Equipe d’Analyse - Tour 46Université Paris IVParis Cedex 05France

Personalised recommendations