Israel Journal of Mathematics

, Volume 150, Issue 1, pp 315–331 | Cite as

Extending partial isometries

  • Sławomir Solecki
Article

Abstract

We show that a finite metric spaceA admits an extension to a finite metric spaceB so that each partial isometry ofA extends to an isometry ofB. We also prove a more precise result on extending a single partial isometry of a finite metric space. Both these results have consequences for the structure of the isometry groups of the rational Urysohn metric space and the Urysohn metric space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Becker and A. S. Kechris,The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Note Series, 232, Cambridge University Press, 1996.Google Scholar
  2. [2]
    B. Herwig and D. Lascar,Extending partial automorphisms and the profinite topology on free groups, Transactions of the American Mathematical Society352 (1999), 1985–2021.CrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Hrushovski,Extending partial isomorphisms of graphs, Combinatorica12 (1992), 411–416.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. S. Kechris, V. Pestov and S. Todorcevic,Fraisse limits, Ramsey theory, and topological dynamics of automorphism groups, Geometric and Functional Analysis15 (2005), 106–189.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    A. S. Kechris and C. Rosendal,Turbulence, amalgamation and generic automorphisms of homogeneous structures, to appear.Google Scholar
  6. [6]
    G. W. Mackey,Ergodic theory and virtual groups, Mathematische Annalen166 (1966), 187–207.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    D. Marker,Model Theory: An Introduction, Graduate Texts in Mathematics, Springer, Berlin, 2002.MATHGoogle Scholar
  8. [8]
    S. A. Morris and V. Pestov,A topological generalization of the Higman-Neumann-Neumann theorem, Journal of Graph Theory1 (1998), 181–187.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    V. Pestov,Ramsey-Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel Journal of Mathematics,127 (2002), 317–357;A corrigendum to the article: Ramsey-Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel Journal of Mathematics145 (2005), 375–379.MATHMathSciNetGoogle Scholar
  10. [10]
    P. Urysohn,Sur en espace métrique universel, Bulletin des Sciences Mathématiques51 (1927), 43–64, 74–90.Google Scholar
  11. [11]
    V. V. Uspenskij,On the group of isometries of the Urysohn universal metric space, Commentationes Mathematicae Universitatis Carolinae31 (1990), 181–182.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University 2005

Authors and Affiliations

  • Sławomir Solecki
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations