Advertisement

Molecular Biotechnology

, Volume 8, Issue 1, pp 17–33 | Cite as

Antiviral ribozymes

New jobs for ancient molecules
  • Annette Menke
  • Gerd HobomEmail author
Review

Abstract

Catalytic RNAs are a genetic property not only of some particular viroids or viruses, but also are more common naturally among eukaryotes and even prokaryotes than earlier expected. However, the major interest in ribozymes results from their potential for development of “tailor-made” cDNA constructions designed to be transcribed into catalytic RNAs that will recognize by hybridization and destroy by specific cleavage their cellular or viral RNA targets. The efficiency of an antiviral ribozyme is determined by both the accessibility and sequence conservation of the target region, as well as the design of the ribozyme: its type, size, and composition of flanking sequences; expression rates; and cellular compartment localization. Until now the most frequently selected viral target is the human immunodeficiency virus, where an up to a 104-fold inhibition in its progeny production has been achieved. Although the first generation ribozymes focused on improvements in basic design and expression rates, more recently the efficiency of antiviral catalytic activity has been increased by employing polyribozymes and/or multitarget ribozymes, as well as special constructions to enhance the cellular co-compartmentation of the ribozyme with its viral RNA target.

Index Entries

Hammerhead ribozymes hairpin ribozymes hepatitis delta virus HIV antiviral therapy intracellular targeting polyribozymes multitarget ribozymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S. (1993) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme.Cell 35, 849–857.Google Scholar
  2. 2.
    Krüger, K., Gabrowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R. (1982) Self splicing RNA, autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena.Cell 31, 147–157.PubMedGoogle Scholar
  3. 3.
    Cech, T. R. and Bass, B. L. (1986) Biological catalysis by RNA.Annu. Rev. Biochem. 55, 599–629.PubMedGoogle Scholar
  4. 4.
    Chen, Z., Kamath, P., and Cech, T. R. (1987) The chemistry of self splicing RNA and RNA enzymes.Science 236, 1532–1539.Google Scholar
  5. 5.
    Cech, T. (1987) The chemistry of self-splicing RNA and RNA enzymes.Science 236, 1532–1539.PubMedGoogle Scholar
  6. 6.
    Cech, T. R. (1988) Conserved sequences and structures of group 1 introns: building an active site for RNA catalysis-a review.Gene 73, 259–271.PubMedGoogle Scholar
  7. 7.
    Loria, A. and Pan, T. (1996) Domain structure of the ribozyme from eubacterial ribonuclease P.RNA 2, 551–563.PubMedGoogle Scholar
  8. 8.
    Zarrinkar, P. P., Wang, J., and Williamson, J. R. (1996) Slow folding kinetics of RNase P RNA.RNA 2, 564.PubMedGoogle Scholar
  9. 9.
    Tinoco, I., Jr. (1996) RNA enzymes: putting together a large ribozyme.Curr. Biol. 6, 1374–1376.PubMedGoogle Scholar
  10. 10.
    Rossi, J. J. (1995) Controlled, targeted, intracellular expression of ribozymes: progress and problems.TIBTECH 13, 301–306.Google Scholar
  11. 11.
    Symons, R. H. (1992) Small catalytic RNAs.Annu. Rev. Biochem. 61, 640–671.Google Scholar
  12. 12.
    Been, M. D. (1994)Cis-andtrans-acting ribozymes from a human pathogen, hepatitis delta virus.Trends Biochem. Sci. 19, 251–256.PubMedGoogle Scholar
  13. 13.
    Tanner, N. K., Schaff, S., Thill, G., Petit-Koskas, G., Crain-Denoyelle, A. M., and Westhoff, E. (1994) A three-dimensional model of hepatitis delta ribozyme based on biochemical and mutational analyses.Curr. Biol. 4, 488–498.PubMedGoogle Scholar
  14. 14.
    Branch, A. D. and Robertson, H. D. (1984) A replication cycle for viroids and other small infectious RNAs.Science 223, 450–455.PubMedGoogle Scholar
  15. 15.
    Hernandez, C. and Flores, R. (1992) Plus and minus RNAs of peach latent mosaic viroid self-cleavein vitro via hammerhead structures.Proc. Natl. Acad. Sci. USA 89, 3711–3715.PubMedGoogle Scholar
  16. 16.
    Baumstark, T. and Riesner, D. (1995) Only one of four possible secondary structures of the central conserved region of potato spindle tuber viroid is a substrate for processing in a potato nuclear extract.Nucleic Acids Res. 23, 4246–4254.PubMedGoogle Scholar
  17. 17.
    Sullenger, B. A. and Cech, T. R. (1994) Ribozyme mediated repair of defective mRNA by targeted trans-splicing.Nature 371, 619–622.PubMedGoogle Scholar
  18. 18.
    Pan, T. and Uhlenbeck, O. C. (1992) A small metalloribozyme with a two step reaction mechanism.Nature 358, 560–563.PubMedGoogle Scholar
  19. 19.
    Been, M. D. and Cech, T. R. (1988) RNA as an RNA polymerase, net elongation of an RNA primer catalyzed by theTetrahymena ribozyme.Science 239, 1412–1415.PubMedGoogle Scholar
  20. 20.
    Green, R. and Szostak, J. W. (1992) Selection of a ribozyme that functions as a superior template in a self-copying reaction.Science 258, 1910–1915.PubMedGoogle Scholar
  21. 21.
    Ekland, E. H. and Bartel, D. P. (1995) The secondary structure and sequence optimization of an RNA ligase ribozyme.Nucleic Acids Res. 23, 3231–3238.PubMedGoogle Scholar
  22. 22.
    Lorsch, J. R. and Szostak, J. W. (1994) In vitro evolution of new ribozymes with polynucleotide kinase activity.Nature 371, 31–36.PubMedGoogle Scholar
  23. 23.
    Lohse, P. A. and Szostak, J. W. (1996) Ribozyme catalysed amino acid transfer reactions.Nature 381, 442–444.PubMedGoogle Scholar
  24. 24.
    Robertson, D. L. and Joyce, G. F. (1990) Selectionin vitro of an RNA enzyme that specifically cleaves single-stranded DNA.Nature 344, 467–468.PubMedGoogle Scholar
  25. 25.
    Tsang, J. and Joyce, G. F. (1994) Evolutionary optimization of the catalytic properties of a DNA cleaving ribozyme.Biochemistry 33, 5966–5973.PubMedGoogle Scholar
  26. 26.
    Pyle, A. M. (1993) Ribozymes, a distinct class of metalloenzymes.Science 261, 709–714.PubMedGoogle Scholar
  27. 27.
    Tuschl, T., Thompson, J. B., and Eckstein, F. (1995) RNA cleavage by small catalytic RNAs.Curr. Opin. Struc. Biol. 5, 296–302.Google Scholar
  28. 28.
    Forster, A. and Symons, R. H. (1987) Self-cleavage of plus and minus RNAs of a virusoid and structural model for the active sites.Cell 49, 211–220.PubMedGoogle Scholar
  29. 29.
    Uhlenbeck, O. C. (1987) A small catalytic oligoribonucleotide.Nature 328, 596–600.PubMedGoogle Scholar
  30. 30.
    Epstein, L. M. and Pabón-Peña, L. M. (1991) Alternative modes of self-cleavage by newt satellite 2 transcripts.Nucleic Acids Res. 19, 1699–1705.PubMedGoogle Scholar
  31. 31.
    Buzayan, J. M., Gerlach, W. L., and Bruening, G. (1986) Satellite tobacco ringspot virus, a subset of the RNA sequence is sufficient for autolytic processing.Proc. Natl. Acad. Sci. USA 83, 9139–9143.Google Scholar
  32. 32.
    Hampel, A. and Tritz, R. (1989) RNA catalytic properties of the minimum (-) sTRSV sequence.Biochemistry 28, 4929–4933.PubMedGoogle Scholar
  33. 33.
    Hertel, K. J., Pardi, A., Uhlenbeck, O. C., Koizumi, M., Ohtsuka, E., Uesugi, S., Cedergren, R., Eckstein, F., Gerlach, W. L., Hodgson, R., and Symons, R. H. (1992) Numbering system for the hammerhead.Nucleic Acids Res. 20(12), 3252–3256.PubMedGoogle Scholar
  34. 33a.
    Butcher, S. E. and Burke, J. M. (1994) Structure mapping of the hairpin ribozyme, Magnesium-dependent folding and evidence for tertiary interactions within the ribozyme-substrate complex.J. Mol. Biol. 244, 52–63.PubMedGoogle Scholar
  35. 34.
    Pley, H. W., Flaherty, K. M., and McKay, D. B. (1994) Three-dimensional structure of a hammerhead ribozyme.Nature 372, 68–74.PubMedGoogle Scholar
  36. 35.
    Perreault, J. P., Wu, T., Consineau, B., Ogilvie, K. K., and Cedergren, R. (1990) Mixed deoxyribo- and ribooligonucleotides with catalytic activity.Nature 344, 565–567.PubMedGoogle Scholar
  37. 36.
    Ruffner, D. E. and Uhlenbeck, O. C. (1990) Thiophosphate interference experiments locate phosphates important for the hammerhead RNA self-cleavage reaction.Nucleic Acids Res. 18, 6025–6029.PubMedGoogle Scholar
  38. 37.
    Fu, D.-J. and McLaughlin, L. W. (1992) Importance of specific purine amino and hydroxyl groups for efficient cleavage by a hammerhead ribozyme.Proc. Natl. Acad. Sci. USA 89, 3985–3989.PubMedGoogle Scholar
  39. 38.
    Tuschl, T. and Eckstein, F. (1993) Hammerhead ribozymes, Importance of stem-loop II for activity.Proc. Natl. Acad. Sci. USA 90, 6991–6994.PubMedGoogle Scholar
  40. 39.
    Williams, D. M., Pieken, W. A., and Eckstein, F. (1992) Function of specific 2′-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2′ modifications.Proc. Natl. Acad. Sci. USA 89, 918–921.PubMedGoogle Scholar
  41. 40.
    Haseloff, J. and Gerlach, W. L. (1988) Simple RNA enzymes with new and highly specific endonuclease activities.Nature 334, 585–591.PubMedGoogle Scholar
  42. 41.
    Berzal-Herranz, A., Joseph, S., Chowrira, B. M., Butcher, S. E., and Burke, J. M. (1993) Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme.EMBO J. 12, 2567–2574.PubMedGoogle Scholar
  43. 42.
    Thill, G., Vasseur, M., and Tanner, N. K. (1993) Structural and sequence elements required for self cleaving activity of the hepatitis delta virus ribozyme.Biochemistry 32, 4254–4262.PubMedGoogle Scholar
  44. 43.
    Perrotta, A. T. and Been, M. D. (1992) Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis delta virus RNA sequence.Biochemistry 31, 16–21.PubMedGoogle Scholar
  45. 44.
    Cameron, F. H. and Jennings, P. A. (1989) Specific gene suppression by engineering ribozymes in monkey cells.Proc. Natl. Acad. Sci. USA 86, 9139–9143.PubMedGoogle Scholar
  46. 45.
    Cotten, M. and Brinstiel, M. L. (1989) Ribozyme mediated destruction of RNA in vivo.EMBO J. 8, 3861–3866.PubMedGoogle Scholar
  47. 46.
    L'Huillier, P. J., Davis, S. R., and Bellamy, A. R. (1992) Cytoplasmatic delivery of ribozyme leads to efficient reduction in alpha lactalbumin mRNA levels in C127I mouse cells.EMBO J. 11, 4411–4418.PubMedGoogle Scholar
  48. 47.
    Kashani-Sabet, M., Funato, T., Tone, T., Jiao, L., Wang, W., Yoshida, E., Kashfinn, B. I., Shitara, T., Wu, A. M., Moreno, J. G., et al. (1992) Reversal of the malignant phenotype by an anti-ras ribozyme.Antisense Res. Dev. 2, 3–15.PubMedGoogle Scholar
  49. 48.
    Ohta, Y., Kijima, H., Ohkawa, T., Kashani-Sabet, M., and Scanlon, K. J. (1996) Tissue-specific expression of an anti-ras ribozyme inhibits proliferation of human malignant melanoma cells.Nucleic Acids Res. 24, 938–942.PubMedGoogle Scholar
  50. 49.
    Bass, B. L. and Weintraub, H. (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate.Cell 55, 1089–1098.PubMedGoogle Scholar
  51. 50.
    Stein, C. A. and Cheng, Y. C. (1993) Antisense oligonucleotides as therapeutic agents: is the bullet really magical?Science 261, 1004–1012.PubMedGoogle Scholar
  52. 51.
    Herschlag, D. (1991) Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo, more isn't always better.Proc. Natl. Acad. Sci. USA 88, 6921–6925.PubMedGoogle Scholar
  53. 52.
    Herschlag, D., Khosla, M., Tsuchihashi, Z., and Karpel, R. L. (1994) An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis.EMBO J. 13, 2913–2924.PubMedGoogle Scholar
  54. 53.
    Tsuchihashi, Z., Khosla, M., and Herschlag, D. (1993) Protein enhancement of hammerhead ribozyme catalysis.Science 262, 99–102.PubMedGoogle Scholar
  55. 54.
    Bertrand E. L. and Rossi, J. J. (1994), Facilitation of hammerhead ribozyme catalysis by the nucleocapsid protein of HIV-I and the heterogenous nuclear ribonucleoprotein A1.EMBO J. 13, 2904–2912.PubMedGoogle Scholar
  56. 55.
    Heidenreich, O. and Eckstein, F. (1992) Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of Human Immunodeficiency Virus type 1.J. Biol. Chem. 267, 1904–1909.PubMedGoogle Scholar
  57. 56.
    Heidenreich, O., Benseler, F., Aurup, H., and Eckstein, F. (1994) High activity and stability of hammerhead ribozymes containing 2′-modified pyrimidine nucleosides and phosphorothioates.J. Biol. Chem. 269, 2131–2138.PubMedGoogle Scholar
  58. 57.
    Beigelman, L., McSwiggen, J. A., Draper, K. G., Gonzales, C., Jensen, K., Karpeisky, A. M., Modak, A. S., Matulic-Adamic, J., Di-Renzo, A. B., Haeberli, P., Sweedler, D., Tracz, D., Grimm, S., Wincott, F. E., Thackray, V. G., and Usman, N. (1995) Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance.J. Biol. Chem. 270, 25,702–25,708.Google Scholar
  59. 58.
    Taylor, N. R., Kaplan, B. E., Swiderski, P., Li, H., and Rossi, J. J. (1992) Chimeric DNA-RNA hammer-head ribozymes have enhanced in vitro catalytic efficiency and increased stability in vivo.Nucleic Acids Res. 17, 4559–4565.Google Scholar
  60. 59.
    Cotten, M. (1990) The in vivo application of ribozymes.TIBTECH 8, 174–178.Google Scholar
  61. 60.
    Zakharchuk, A. N., Doronin, K. K., Karpov, V. A., Krougliak, V. A., and Naroditsky, B. S. (1995) The fowl adenovirus type 1 (CELO) virus-associated RNA-encoding gene, a new ribozyme-expression vector.Gene 161, 189–193.PubMedGoogle Scholar
  62. 61.
    Rossi, J. J. and Sarver, N. (1990) RNA enzymes (robozymes) as antiviral therapeutic agents.TIBTECH 8, 179–183.Google Scholar
  63. 62.
    Ojwang, J. O., Hampel, A., Looney, D. J., Wong-Staal, F., and Rappaport, J. (1992) Inhibition of human immunodeficiency virus type 1 expression by a haiprin ribozyme.Proc. Natl. Acad. Sci. USA 89, 10,802–10,806.Google Scholar
  64. 63.
    Yu, M., Ojwang, J., Yamada, O., Hampel, A., Rappaport, J., Looney, D., and Wong-Staal, F. (1993) A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1.Proc. Natl. Acad. Sci. USA 90, 6340–6344.PubMedGoogle Scholar
  65. 64.
    Yamada, O., Yu, M., Yee, J.-K., Kraus, G., Looney, D., and Wong-Staal, F. (1994) Intracellular immunization of human T cells with a hairpin ribozyme against human immunodeficiency virus type 1.Gene Ther. 1, 38–45.PubMedGoogle Scholar
  66. 65.
    Sun, L. Q., Pyati, J., Smythe, J., Wang, L., Macpherson, J., Gerlach, W., and Symonds, G. (1995) Resistance to human immunodeficiency virus type 1 infection conferred by transduction of human peripheral blood lymphocytes with ribozyme, antisense, or polymeric trans-activation response element constructs.Proc. Natl. Acad. Sci. USA 92, 7272–7276.PubMedGoogle Scholar
  67. 65a.
    Yu, M., Leavitt, M. C., Maruyama, M., Yamada, O., Young, D., Ho, A. D., and Wong-Staal, F. (1995) Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1.Proc. Natl. Acad. Sci. USA 92, 699–703.PubMedGoogle Scholar
  68. 66.
    Han, L., Yun, J. S., and Wagner, T. E. (1991) Inhibition of Moloney murine leukemia virus-induced leukemia in transgenic mice expression antisense RNA complementary to the retroviral packaging sequences.Proc. Natl. Acad. Sci. USA 88, 4313–4317.PubMedGoogle Scholar
  69. 67.
    Sun, L. Q., Warrilow, D., Wang, L., Witherington, C., Macpherson, J., and Symonds, G. (1994) Ribozyme-mediated suppression of Moloney murine leukemia virus and human immunodeficiency virus type 1 replication in permissive cell lines.Proc. Natl. Acad. Sci. USA 91, 9715–9719.PubMedGoogle Scholar
  70. 68.
    Sun, L. Q., Wang, L., Gerlach, W. L., and Symonds, G. (1995) Target sequence-specific inhibition of HIV-1 replication by ribozymes directed totat RNA.Nucleic Acids Res. 23, 2909–2913.PubMedGoogle Scholar
  71. 69.
    Lo, S. K. M., Biasolo, M. A., Dehni, G., Palu, G., and Haseltine, W. A. (1992) Inhibition of replication of HIV-1 by retroviral vectors expressingtat-antisense and anti-tat ribozyme RNA.Virology 190, 176–183.PubMedGoogle Scholar
  72. 70.
    Larsson, S., Hotchkiss, G., Su, J., Kebede, T., Andäng, M., Nyholm, T., Johansson, B., Sönnerborg, A., Vahlne, A., Britton, S., and Ährlund-Richter, L. (1996) A novel ribozyme target site located in the HIV-1nef, open reading frame.Virology 219, 161–169.PubMedGoogle Scholar
  73. 71.
    Sarver, N., Cantin, E. M., Chang, P. S., Zaia, J. A., Ladne, P. A., Stephens, D. A., and Rossi, J. J. (1990) Ribozymes as potential anti-HIV-1 therapeutic agents.Science 247, 1222–1225.PubMedGoogle Scholar
  74. 72.
    Chen, C.-J., Banerjea, A. C., Harmison, G. G., Haglund, K., and Schubert, M. (1992) Multitarget-ribozyme directed to cleave at up to nine highly conserved HIV-1env RNA regions inhibits HIV-1 replication: potential effectiveness against most presently sequenced HIV-1 isolates.Nucleic Acids Res. 20, 4581–4589.PubMedGoogle Scholar
  75. 73.
    Homann, M., Tzortzakaki, S., Rittner, K., Sczakiel, G., and Tabler M. (1993) Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1.Nucleic Acids Res. 21, 2809–2814.PubMedGoogle Scholar
  76. 74.
    Joseph, S. and Burke, J. M. (1993) Optimization of an anti-HIV hairpin ribozyme byin vitro selection.J. Biol. Chem. 267, 17,891–17,899.Google Scholar
  77. 75.
    Yamada, O., Kraus, G., Luznik, L., Yu, M., and Wong-Staal, F. (1996) A chimeric human immuno-deficiency virus type 1 (HIV-1) minimal Rev response element-ribozyme molecule exhibits dual antiviral function and inhibits cell-cell transmission of HIV-1.J Virol. 70, 1596–1601.PubMedGoogle Scholar
  78. 76.
    Yu, M., Poeschla, E., and Wong-Staal, F. (1994) Progress towards gene therapy for HIV infection.Gene Ther. 1, 13–26.PubMedGoogle Scholar
  79. 77.
    Lieber, A. and Kay, M. A. (1996) Adenovirus-mediated expression of ribozymes in mice.J. Virol. 70, 3153–3158.PubMedGoogle Scholar
  80. 78.
    Efrat, S., Leiser, M., Wu, Y.J., Fusco-De-Mane, D., Emran, O. A., Surana, M., Jetton, T. L., Magnuson, M. A., Weir, G., and Fleischer, N. (1994) Ribozyme mediated attenuation of pancreatic beta-cell glucokinase expression in transgenic mice resulted in impaired glucose-induced insulin secretion.Proc. Natl. Acad. Sci. USA 91, 2051–2055.PubMedGoogle Scholar
  81. 79.
    Larsson, S., Hotchkiss, G., Andäng, M., Nyholm, T., Inzunza, J., Jansson, I., and Ahrlund-Richter, L. (1994) Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammer-head ribozyme.Nucleic Acids Res. 22 2242–2248.PubMedGoogle Scholar
  82. 80.
    L'Huillier, P. J., Soulier, S., Stimakre, M. G., Lepoury, L., Davis, S. R., Mercier, J. L., and Violette, J.-L. (1996) Efficient and specific ribozyme-mediated reduction of bovine α-lactalbumin expression in double transgenic mice.Proc. Natl. Acad. Sci. USA 93, 6698–6703.PubMedGoogle Scholar
  83. 81.
    Heusch, M., Kraus, G., Johnson, P., and Wong-Staal, F. (1996) Intracellular immunization against SIV mac utilizing a hairpin ribozyme.Virology 216, 241–244.PubMedGoogle Scholar
  84. 82.
    Cantor, G. H., McElwain, T. F., Birkebak, T. A., and Palmer, G. H. (1993) Ribozyme cleavesrex/tax mRNA and inhibits bovine leukemia virus expression.Proc. Natl. Acad. Sci. USA 90, 10,992–10,936.Google Scholar
  85. 83.
    Xing, Z. and Whitton, L. (1993) An anti-lymphocytic choriomeningitis virus ribozyme expressed in tissue culture cells diminishes viral RNA levels and leads to a reduction in infectious virus yields.J. Virol. 67, 1840–1847.PubMedGoogle Scholar
  86. 84.
    Xing, Z., Mahadeviah, S., and Whitton, J. L. (1995) Antiviral activity of RNA molecules containing self releasing ribozymes targeted to lymphocytic choriomeningitis virus.Antisense Res. Dev. 5, 203–212.PubMedGoogle Scholar
  87. 85.
    Maeda, A., Hayashi, M., Mizutani, T., Ishida, K., Watanabe, T., and Namioka, S. (1995) Inhibition of viral multiplication in cells chronically infected with mouse hepatitis virus by antisense RNA against the polymerase gene.J. Vet. Med. Sci. 57, 563–565.PubMedGoogle Scholar
  88. 86.
    Maeda, A., Mizutani, T., Hayashi, M., Watanabe, T., and Namioka, S. (1994) Inhibition of viral multiplication by hammerhead ribozymes targeted against the polymerase gene of mouse hepatitis virus.J. Vet. Med. Sci. 56, 939–945.PubMedGoogle Scholar
  89. 87.
    Mizutani, T., Hayashi, M., Maeda, A., Sasaki, N., Yamashita, T., Kasai, N., and Namioka, S. (1993) Inhibition of mouse hepatitis virus multiplication by antisense oligonucleotide, antisense RNA, sense RNA and ribozyme.Adv. Exp. Med. Biol. 342, 129–135.PubMedGoogle Scholar
  90. 88.
    Tang, X.-B., Hobom, G., and Luo, D. (1995) Ribozyme mediated destruction of influenza A virus in vitro and in vivo.J. Med. Virol. 42, 385–395.Google Scholar
  91. 89.
    Hobom, G. and Menke, A. (1997) Viral RNA targets for ribozymes: influenza A virus.Methods in Molecular Medicine: Therapeutic Application of Ribozymes (Scanlon, K., ed.), Totowa, NJ, Humana, in press.Google Scholar
  92. 90.
    Menke, A. and Hobom, G. (1997) Anti-influenza ribozymes: single versus double hammerheads, submitted.Google Scholar
  93. 91.
    De-Feyter, R., Young, M., Schroeder, K., Dennis, E. S., and Gerlach, W. (1996) A ribozyme gene and an antisense gene are equally effective in conferring resistance to tobacco mosaic virus on transgenic tobacco.Mol. Gen. Genet. 250, 329–338.PubMedGoogle Scholar
  94. 92.
    Lu, D., Chatterjee, S., Brar, D., and Wong, Jr., K. K. (1994) Ribozyme-mediatedin vitro cleavage of transcripts arising from the major transforming genes of human papillomavirus type 16.Cancer Gene Ther. 1, 267–277.PubMedGoogle Scholar
  95. 93.
    Chen, Z., Kanath, P., Zhang, S., Weil, M. M. and Shillitoe, E. J. (1995) Effectiveness of three ribozymes for cleavage of an RNA transcript from human papillomavirus type 18.Cancer Gene Ther. 2(4), 263–271.PubMedGoogle Scholar
  96. 94.
    Cantin, E. M., Podsakoff, G., Willey, D. E., and Openshaw, H. (1992) Antiviral effects of herpes simplex virus specific anti-sense nucleic acids.Adv. Exp. Med. Biol. 312, 139–149.PubMedGoogle Scholar
  97. 95.
    Beck, J. and Nassal, M. (1995) Efficient hammerhead ribozyme-mediated cleavage of the structured hepatitis B virus encapsidation signalin vitro and in cell extracts, but not in intact cells.Nucleic Acids Res. 23, 4954–4962.PubMedGoogle Scholar
  98. 96.
    Lisziewicz, J., Sun, D., Smythe, J., Lusso, P., Lori, F., Louie, A., Markham, P., Rossi, J., Reitz, M., and Gallo, R. (1993) Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS.Proc. Natl. Acad. Sci. USA 90, 8000–8004.PubMedGoogle Scholar
  99. 97.
    Ohkawa, J., Yuyama, N., Takebe, Y., Nishikawa, S., and Taira, K. (1993) Importance of independence in ribozyme reactions, kinetic behavior of trimmed and simply connected multiple ribozymes with potential activity against human immunodeficiency virus.Proc. Natl. Acad. Sci. USA 90, 11,302–11,306.Google Scholar
  100. 98.
    Sullenger, B. A. and Cech, T. R. (1993) Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA.Science 262, 1566–1569.PubMedGoogle Scholar
  101. 99.
    Liu, Z. and Carmichael, G. G. (1994) An efficient new method to inhibit gene expression.Mol. Biotechnol. 2, 107–118.PubMedGoogle Scholar
  102. 100.
    Chowrira, B. M., Pavco, P. A., and McSwiggen, J. A. (1994) In vitro and in vivo comparison of hammerhead, hairpin and hepatitis delta virus self-processing ribozyme cassettes.J. Biol. Chem. 269, 25,856–25,864.Google Scholar
  103. 101.
    Michienzi, A., Prislei, S., and Bozzoni, I. (1996) U1 small nuclear RNA chimeric ribozymes with substrate specificity for the Rev pre-mRNA of human immunodeficiency virus.Proc. Natl. Acad. Sci. USA 93, 7219–7224.PubMedGoogle Scholar
  104. 102.
    Homann, M., Tabler, M., Tzortzakaki, S., and Szakiel, G. (1994) Extension of helix II of an HIV-1 directed hammerhead ribozyme with long antisense flanks does not alter kinetic parametersin vitro but causes loss of the inhibitory potential in living cells.Nucleic Acids Res. 22, 3951–3957.PubMedGoogle Scholar
  105. 103.
    Yuyama, N., Ohkawa, J., Koguma, T., Shirai, M., and Taira, K. (1994) A multifunctional expression vector for an anti-HIV ribozyme that produces a 5′- and 3′-trimmed trans-acting ribozyme, targeted against HIV-1 RNA, and cis-acting ribozymes that are designed to bind to and thereby sequester trans-activator proteins such as Tat and Rev.Nucleic Acids Res. 22, 5060–5067.PubMedGoogle Scholar
  106. 104.
    Sargueil, B., Pecchi, D. B., and Burke, J. M. (1995) An improved version of the hairpin ribozyme functions as a ribonucleoprotein complex.Biochemistry 34, 7739–7748.PubMedGoogle Scholar
  107. 105.
    Yamada, O., Kraus, G., Luznik, L., Yu, M., and Wong-Staal, F. (1996) A chimeric human immuno-deficiency virus type 1 (HIV-1) minimalrev response element: ribozyme molecule exhibits dual function and inhibits cell-cell transmission of HIV-1.J. Virol. 70, 1596–1601.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  1. 1.Institut für Mikrobiologie und MolekularbiologieGiessenGermany

Personalised recommendations