Molecular Biotechnology

, Volume 6, Issue 1, pp 53–64

Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies

  • Andrew D. Guise
  • Shuna M. West
  • Julian B. Chaudhuri
Review

Abstract

Eukaryotic proteins expressed inEscherichia coli often accumulate within the cell as insoluble protein aggregates or inclusion bodies. The recovery of structure and activity from inclusion bodies is a complex process, there are no general rules for efficient renaturation. Research into understanding how proteins fold in vivo is giving rise to potentially new refolding methods, for example, using molecular chaperones. In this article we review what is understood about the main three classes of chaperone: the Stress 60, Stress 70, and Stress 90 proteins. We also give an overview of current process strategies for renaturing inclusion bodies, and report the use of novel developments that have enhanced refolding yields.

Index Entries

Protein refolding molecular chaperones inclusion bodies multisubunits polyethylene glycol arginine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marston, F. A. O. (1986) The purification of eukaryotic polypeptides synthesized inEscherichia coli.Biochem. J. 240, 1–12.PubMedGoogle Scholar
  2. 2.
    Kane, J. F. and Hartley, D. L. (1988) Formation of recombinant protein inclusion bodies inEscherichia coli.Trends Biotech. 6, 95–101.CrossRefGoogle Scholar
  3. 3.
    Georgiou, G. and Bowden, G. (1991) Inclusion body formation and the recovery of aggregated recombinant protein, inin Recombinant DNA Technology and Applications (Prokop, A., Bajpai, R. K., and Ho, C. S., eds.), McGraw-Hill,USA, pp. 333–356.Google Scholar
  4. 4.
    Freedman, R. B. (1992) Protein folding in the cell, inProtein Folding (Creighton, T. E., ed), W. H. Freeman and Co, New York, pp. 455–540.Google Scholar
  5. 5.
    Schein, C. H. (1989) Production of soluble recombinant proteins in bacteria.Bio/Technol. 7, 1141–1148.Google Scholar
  6. 6.
    Thatcher, D. R. and Hitchcock, A. (1994) Protein folding in biotechnology, inMechanisms of Protein Folding (Pain, R. H., ed.), IRL, Oxford University Press, Oxford, UK, pp. 229–261.Google Scholar
  7. 7.
    Hlodan, R., Craig, S., and Pain, R. H. (1991) Protein folding and its implications for the production of recombinant proteins.Biotechnol. Genet. Eng. Rev. 9, 47–88.PubMedGoogle Scholar
  8. 8.
    Privalov, P. L. (1992) Physical basis of the stability of the folded conformations of proteins, inProtein Folding (Creighton, T. E., ed), W. H. Freeman, NY, pp. 83–126.Google Scholar
  9. 9.
    Gilbert, H. F. (1994) The formation of native disulphide bonds, inMechanisms of Protein Folding (Pain, R. H., ed.), IRL/Oxford University Press, Oxford, UK, pp. 104–136.Google Scholar
  10. 10.
    Gething M. J., McCammon, K., and Sambrook, J. (1989) Protein folding and intracellular transport evaluation of conformational changes in nascent exocytotic proteins.Meth. Cell. Biol. 32, 185–206.CrossRefGoogle Scholar
  11. 11.
    Bochkareva, E. S., Lissin, N. M., and Girshovich, A. S. (1988) Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein.Nature 336, 254–257.PubMedCrossRefGoogle Scholar
  12. 12.
    Mitraki, A., Haase-Pettingell, C., and King, J. (1991) Mechanisms of inclusion body formation, inProtein Refolding (De Bernardez-Clark, E. and Georgiou, G., eds.), ACS. Symposium Series, vol. 470: American Chemical Society, Washington, DC, pp. 35–49.Google Scholar
  13. 13.
    Haase-Pettingell, C. and King, J. (1988) Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation: A model for inclusion body formation.J. Biol. Chem. 263, 4977–4983.PubMedGoogle Scholar
  14. 14.
    Sturtevant, J. M., Yu, M.-H., Haase-Pettingell, C., and King, J. (1989) Thermostability of temperature-sensitive folding mutants of the p22 tailspike protein.J. Biol. Chem. 264, 10,693–10,698.Google Scholar
  15. 15.
    Jaenicke, R. (1987) Folding and association of proteins.Prog. Biophys. Mol. Biol. 49, 117–237.PubMedCrossRefGoogle Scholar
  16. 16.
    Jaenicke, R. and Rudolph, R. (1986) Refolding and association of oligomeric proteins.Methods Enzymol. 131, 218–250.PubMedGoogle Scholar
  17. 17.
    Seckler, R. and Jaenicke, R. (1992) Protein folding and protein refolding.FASEB J. 6, 2545–2552.PubMedGoogle Scholar
  18. 18.
    Ellis, R. J. (1990) Molecular Chaperones: The plant connection.Science 250, 954–959.PubMedCrossRefGoogle Scholar
  19. 19.
    Ellis, R. J. (1990) The molecular chaperone concept.Semin. Cell Biol. 1, 72.Google Scholar
  20. 20.
    Hendrick, J. P. and Hartl, F.-U. (1993) Molecular Chaperone functions of heat shock proteinsAnnu. Rev. Biochem. 62, 349–384.PubMedCrossRefGoogle Scholar
  21. 21.
    Linquist, S. and Craig, E. (1988) The heat shock proteins.Annu. Rev. Genet. 22, 631–637.CrossRefGoogle Scholar
  22. 22.
    Fayet, O., Ziegelhoffer, T., and Georgopoulos, C. (1989) The GroES and GroEL shock gene products ofE. coli are essential for bacterial growth at all temperatures.Can. J. Bact. 171, 1379–1385.Google Scholar
  23. 23.
    Beckman, R., Mizzen, L., and Welch, W. (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for proteins folding and assembly.Science 248, 850–854.CrossRefGoogle Scholar
  24. 24.
    Chirico, W., Waters, M., and Blobel, G. (1988) 70K Heat shock related proteins stimulate translocation into microsomes.Nature 332, 805–809.PubMedCrossRefGoogle Scholar
  25. 25.
    Murakami, H., Pain, D., and Blobel, G. (1988) 70 KD heat shock protein is one of at least two factors stimulating protein import into mitochondria.J. Biol. Chem. 107, 2051–2057.Google Scholar
  26. 26.
    Pelham, H. (1986) Speculations on the functions of the major heat-shock and glucose related functions.Cell 46, 959–961.PubMedCrossRefGoogle Scholar
  27. 27.
    Skowyra, D., Georgopoulos, C., and Zylic, M. (1990) TheE. coli DnaK gene product, the hsp 70 homolog, can reactivate the heat inactivated RNA. polymerase in an ATP dependent manner.Cell 62, 939–944.PubMedCrossRefGoogle Scholar
  28. 28.
    Ellis, R. J. and van der Vies, S. M. (1991) Molecular chaperones.Annu. Rev. Biochem. 60, 321–347.PubMedCrossRefGoogle Scholar
  29. 29.
    Freedman, R. B. (1991) Protein-disulphide isomerase, inConformation and Forces in Protein Folding (Nall, B. T. and Dill, K. A., eds.), AAAS, Washington, DC, pp. 204–214.Google Scholar
  30. 30.
    Goldenberg, D. P. (1992) Mutational analysis of protein folding and stability, inProtein Folding (Creighton, T. C., ed), W. H. Freeman and Co, New York, pp. 353–403.Google Scholar
  31. 31.
    Wickner, S., Hoskins, J., and McKenny, K. (1991) Function of DnaJ, and DnaK as chaperones in the origin specific DNA. binding by RePA.Nature 350, 165–167.PubMedCrossRefGoogle Scholar
  32. 32.
    Ellis, R. and Hemmingsen, S. (1989) Molecular Chaperones: proteins essential for the biogenesis of some macromolecular structures.Trends Biochem. Sci. 14, 339–342.PubMedCrossRefGoogle Scholar
  33. 33.
    Georgopolous, C. and Ang, D. (1990) TheE. coli GroE chaperonins.Semin. Cell. Biol. 1, 19–25.Google Scholar
  34. 34.
    Hendrix, R. (1979) Purification and properties of GroE, a host protein involved in bacteriophage assembly.J. Mol. Biol. 129, 375–392.PubMedCrossRefGoogle Scholar
  35. 35.
    McMullin, T. and Hallberg, R. (1988) Molecular. A highly evolutionary conserved mitochondrial protein is structurally related to the protein encoded byE. coli GroEL gene.Cell. Biol. 8, 317–380.Google Scholar
  36. 36.
    Chandrasekhar, G., Tilly, K., Woolford, C., Hendrix, R., and Georgopolous, C. (1986) Purification and properties of the GroES morphenogenic protein ofE. coli.J. Biol. Chem. 261, 12,414–12,419.Google Scholar
  37. 37.
    Jaenicke, R. (1993) Role of accessory proteins in protein folding.Curr. Opin. Struct. Biol. 3, 104–112.CrossRefGoogle Scholar
  38. 38.
    Miller, A., Maghlaoui, K., Albanese, G., Kleinjan, G., and Smith, C. (1993)E. coli chaperonins Cpn 60 and Cpn 10 do not catalyse the refolding of mitochondrial malate dehydrogenase.Biochem. J. 291, 139–144.PubMedGoogle Scholar
  39. 39.
    Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F. X., and Keifhaber, T., (1991) GroE. facilities refolding of citrate synthase by suppressing aggregation.Biochemistry 30, 1586–1591.PubMedCrossRefGoogle Scholar
  40. 40.
    Martin, J. Langer, T., Boteva, R., Schramel, A., and Horwich, A. (1991) Chaperonin mediated protein folding at the surface of GroEL through a molten globule like intermediate.Nature 352, 36–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Staniforth, R. A., Burston, S. G., Atkinson, T., and Clarke, A. R. (1994) Affinity of chaperonin 60 for a protein substrate and its modulation by nucleotides and chaperonin 10.Biochem. J. 300, 651–658.PubMedGoogle Scholar
  42. 42.
    Mizobata, T., Akiyama, Y., Ito, K., Yumoto, M. and Kawata, Y. (1992) Effects of the chaperonin GroE on the refolding of trytophanase fromE. coli. Refolding is enhanced in the prescence of ADP.J. Biol. Chem. 267, 17,773–17,779.Google Scholar
  43. 43.
    Wiech, C., Buchner, J. Zimmermann, R. Jacob, U. (1992) Hsp 90 chaperones: protein folding in vitro.Nature 358, 169,170.CrossRefGoogle Scholar
  44. 44.
    London, J., Skrzynia, C., and Goldberg, M. E. (1974) Renaturation ofEscherichia coli tryptophanase after exposure to 8M urea.Eur. J. Biochem. 47, 409–415.PubMedCrossRefGoogle Scholar
  45. 45.
    Goldberg, M. E., Rudloph, R., and Jaenicke, R. (1991) A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme.Biochem. 30, 2790–2797.CrossRefGoogle Scholar
  46. 46.
    Thatcher, D. R., Wilks, P., and Chaudhuri, J. B. (1996) Inclusion bodies and refolding, inProteins Labfax (Price, N., ed.), BIOS Scientific, Oxford, pp. 119–130.Google Scholar
  47. 47.
    Babbitt, P. C., West, B. L., Buechter, D. D., Kuntz, I. D., and Kenyon, G. L. (1990) Removal of a proteolytic activity associated with aggregates formed from expression of creatine kinase inEscherichia coli leads to improved recovery of active enzyme.Bio/Technol. 8, 945–949.CrossRefGoogle Scholar
  48. 48.
    Rudolph, R. (1990) Renaturation of recombinant, disulphide-bonded proteins from “inclusion bodies”, inModern Methods in Protein- and Nucleic Acid Research (Tschesche, H., ed.), Walter de Gruyter, Berlin, pp. 149–171.Google Scholar
  49. 49.
    Forman, S. M., De Bernardez, E. R., Feldberg, R. S., and Swartz, R. W. (1990) Cross-flow filtration for the separation of inclusion bodies from soluble proteins inEscherichia coli cell lysates.J. Membr. Sci. 48, 263–279.CrossRefGoogle Scholar
  50. 50.
    Chaudhuri, J. B. (1994) Refolding recombinant proteins: process strategies and novel approaches.Ann. NY Acad. Sci. 721, 374–385.PubMedCrossRefGoogle Scholar
  51. 51.
    Vicik, S. and De Bernardez-Clark, E. (1991) An engineering approach to achieving high-protein refolding yields, inACS Symposium Series, vol. 470:Protein Refolding (De Bernardez-Clark, E. and Georgiou, G., eds.), American Chemical Society, Washington, DC, pp. 180–196.Google Scholar
  52. 52.
    Builder, S. E., and Ogez, J. R. (1984) Purification and activity assurance of precipitated heterologous proteins. US Patent 4620948.Google Scholar
  53. 53.
    Fischer, B., Sumner, I., and Goodenough, P. (1993) Renaturation of lysozyme-temperature dependence of renaturation rate, renaturation yield and aggregation: identification of hydrophobic folding intermediates.Arch. Biochem. Biophys. 306, 183–187.PubMedCrossRefGoogle Scholar
  54. 54.
    Jaenicke, R. and Rudolph, R. (1989) Folding proteins, inProtein Structure—AA Practical Approach (Creighton, T. E. ed.), IRL/Oxford, UK, pp. 191–223.Google Scholar
  55. 55.
    Mendoza, J. A., Rogers, E., Lorimer, G. H., and Horowitz, P. M. (1991) Unassisted refolding of urea unfolded rhodanese.J. Biol. Chem. 266, 13,587–13,591.Google Scholar
  56. 56.
    Gatenby, A. A., Viitanen, P. V., and Lorimer, G. H. (1990) Chaperonin assisted polypeptide folding and assembly: implications for the production of functional proteins in bacteria.TIBTECH. 8, 345–358.Google Scholar
  57. 57.
    Viitanen, P. V., Lubben, T. H., Reed, J., Goloubinoff, P., O'Keefe, D. P., and Lorimer, G. H. (1990) Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent.Biochemistry 29, 5665–5671.PubMedCrossRefGoogle Scholar
  58. 58.
    Buchner, J. and Rudolph, R. (1991) Renaturation, purification and characterization of recombinant fabfragments produced inEscherichia coli.Bio/Technology 9, 157–162.PubMedCrossRefGoogle Scholar
  59. 59.
    Seckler, R., Fuchs, A., King, J., and Jaenicke, R. (1989) Reconstitution of the thermostable trimeric phage-P22 tailspike protein from denatured chains in vitro.J. Biol. Chem. 246, 11,750–11,753.Google Scholar
  60. 60.
    Tsou, C.-L. (1986) Location of the active sites of some enzymes in limited and flexible molecular regions.Trends Biochem. Sci. 11, 427–429.CrossRefGoogle Scholar
  61. 61.
    Tsou, C.-L. (1993) Conformational flexibility of enzyme active sites.Science 262, 380,381.CrossRefGoogle Scholar
  62. 62.
    Cleland, J. L (1993) Impact of protein folding on biotechnology, inACS Symposium Series, vol. 526:Protein Folding (Cleland, J. L., ed.), American Chemical Society, Washington, DC, pp. 1–21.Google Scholar
  63. 63.
    Rudolph, R, Opitz, U, Hesse, F, Riebland, R., and Fischer, S. (1992) Reactivation of microbially produced human tissue-type plasminogen activator.Biotechnol. Int. 321–325.Google Scholar
  64. 64.
    Cleland, J. L. and Wang, D. I. C. (1990) Cosolvent assisted protein refolding.Bio/Technol. 8, 1274–1278.CrossRefGoogle Scholar
  65. 65.
    Cleland, J. L., Builder, S. E., Swartz, J. R., Winkler, M., Chang, J. Y., and Wang, D. I. C. (1992) Polyethylene glycol enhanced protein refolding.Bio/Technol. 10, 1013–1019.CrossRefGoogle Scholar
  66. 66.
    Carlson, J. D. and Yarmush, M. L. (1992) Antibody assisted protein refolding.Bio/Technol. 10, 86–91.CrossRefGoogle Scholar
  67. 67.
    Buchner, J., Brinkmann, U., and Pastan, I. (1992) Renaturation of a single-chain immunotoxin facilitated by chaperones and protein disulphide isomerase.Bio/Technol. 10, 682–685.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Andrew D. Guise
    • 1
  • Shuna M. West
    • 1
  • Julian B. Chaudhuri
    • 1
  1. 1.School of Chemical EngineeringUniversity of Bath

Personalised recommendations