High Energy Chemistry

, Volume 34, Issue 2, pp 107–111 | Cite as

Stepwise ionization of hydroquinone vapor by monochromatic radiation

  • M. E. Akopyan
  • V. I. Kleimenov
  • A. G. Feofilov
Laser Chemistry


Processes of stepwise ionization of hydroquinone vapor by radiation in the range 315–275 nm were studied using photoionization spectroscopy techniques. The two-step ionization process yielding molecular ions was found to prevail at a laser power density up to ∼107 W/cm2. As the radiation intensity increases, the progressively stronger and deeper degradation takes place via dissociation of the molecular and, probably, fragment ions due to absorption of at least one additional photon. The slow process of the formation of C5H6O0 ions at an effective rate constant of the order of 106 s−1 was observed.


Hydroquinone Electric Field Pulse High Energy Chemistry Laser Power Density Effective Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Letokhov, V.S.,Lazernaya fotoionizatsionnaya spektroskopiya (Laser Photoionization Spectroscopy), Moscow: Nauka, 1987.Google Scholar
  2. 2.
    Kleimenov, V.I., Feofilov, A.G., Akopyan, M.E., Aleksandrov, M.S., Ivanov, V.S. and Medynskii, G.S.,Khim. Vys. Energ., 1998, vol. 32, no. 4, p. 291 [High Energy Chem. (Engl. transl.), 1998, vol. 32, no. 4, p. 257].Google Scholar
  3. 3.
    Tembreull, R., Dunn, T.M. and Lubman, D.M.,Spectrochim. Acta, Part A, 1986, vol. 42, no. 8, p. 899.CrossRefGoogle Scholar
  4. 4.
    Dunn, T.M.,Chem. Phys. Lett, 1985, vol. 121, nos. 4-5, p. 453.CrossRefGoogle Scholar
  5. 5.
    Oikawa, A., Abe, H., Mikami, N. and Ito, M.,Chem. Phys. Lett., 1985, vol. 116, no. 1, p. 50.CrossRefGoogle Scholar
  6. 6.
    Tzeng, W.B., Narayanan, K., Hsieh, C.Y., and Tung, C.C.,Spectrochim. Acta, Part A, 1997, vol. 53, no. 14, p. 2595.CrossRefGoogle Scholar
  7. 7.
    Humphrey, S.J. and Pratt, D.W.,J. Chem. Phys., 1993, vol. 99, no. 7, p. 5078.CrossRefGoogle Scholar
  8. 8.
    Beck, C.A.,J. Chem. Phys., 1950, vol. 18, no. 9, p. 1135.CrossRefGoogle Scholar
  9. 9.
    Palmer, M.H., Moyes, W., Speirs, M., and Ridyard, J.N.A.,J. Mol. Struct, 1979, vol. 52, no. 2, p. 293.CrossRefGoogle Scholar
  10. 10.
    Takhistov, V.V.,Organicheskaya mass-spektrometriya (Organic Mass Spectrometry), Leningrad: Nauka, 1990.Google Scholar
  11. 11.
    Zhigiang Wang Day, P.N. and Pachter, R.,Chem. Phys. Lett., 1995, vol. 237, nos. 1-2, p. 45.CrossRefGoogle Scholar
  12. 12.
    Matyuk, V.M., Polevoi, A.V., Potapov, V.K., and Prokhoda, A.L.,Khim. Vys. Energ., 1982, vol. 16, no. 2, p. 99.Google Scholar
  13. 13.
    Ta-Chau Changand Johnston, M.V.,J. Phys. Chem., 1987, vol. 91, no. 4, p. 884.CrossRefGoogle Scholar
  14. 14.
    Hopkinson, A.C. and Lien, N.H.,J. Am. Chem. Soc, 1986, vol. 108, no. 11, p. 2843.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • M. E. Akopyan
    • 1
  • V. I. Kleimenov
    • 1
  • A. G. Feofilov
    • 1
  1. 1.Research Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations