Israel Journal of Mathematics

, Volume 34, Issue 1–2, pp 21–37 | Cite as

Uniqueness and existence of Whittaker models for the metaplictic group

  • Stephen Gelbart
  • Roger Howe
  • Ilya Piatetski-Shapiro
Article

Abstract

We introduce the notion of Whittaker models for representations of a metaplectic covering group of GL (2) and establish the uniqueness and existence of such models. Our results generalize corresponding results of Jacquet-Langlands, but the methods are new.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S Gelbart,Weil’s Representation and the Spectrum of the Metaplectic Group, Lecture Notes in Mathematics530, Springer-Verlag, Berlin, 1976.MATHGoogle Scholar
  2. 2.
    S. Gelbart and I. Piatetski-Shapiro,Automorphic L-functions of half-integral weight, Proc. Nat. Acad. Sci. U.S.A.75 (1978), 1620–1623.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Gelbart and I. Piatetski-Shapiro,On Shimura’s correspondence for modular forms of half-integral weight, to appear in Proc. Internat. Colloq. on Automorphic Forms, Representation Theory, and Arithmetic, Bombay, January 1979.Google Scholar
  4. 4.
    S. Gelbart and I. Piatetski-Shapiro,Distinguished representations and modular forms of half-integral weight, submitted to Invent. Math.Google Scholar
  5. 5.
    R. Godement,Notes on Jacquet-Langlands Theory, Institute for Advanced Study, Princeton, 1970.Google Scholar
  6. 6.
    H. Jacquet and R. P. Landlands,Automorphic Forms on GL(2), Lecture Notes in Mathematics114, Springer-Verlag, Berlin, 1970.MATHGoogle Scholar
  7. 7.
    T. Kubota,Automorphic Functions and the Reciprocity Law in a Number Field, Kyoto University, 1969.Google Scholar
  8. 8.
    S. Lang, SL2(R), Addison-Wesley, 1975.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1979

Authors and Affiliations

  • Stephen Gelbart
    • 1
    • 2
    • 3
  • Roger Howe
    • 1
    • 2
    • 3
  • Ilya Piatetski-Shapiro
    • 1
    • 2
    • 3
  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.Department of MathematicsYale UniversityNew HavenUSA
  3. 3.Tel Aviv UniversityTel AvivIsrael

Personalised recommendations