Journal of Molecular Neuroscience

, Volume 10, Issue 3, pp 163–179

Advances in the molecular characterization of tryptophan hydroxylase

  • Susan M. Mockus
  • Kent E. Vrana
Minireview

Abstract

The neurotransmitter serotonin has been implicated in numerous physiological functions and pathophysiological disorders. The hydroxylation of the aromatic amino acid tryptophan is rate-limiting in the synthesis of serotonin. Tryptophan hydroxylase (TPH), as the rate-limiting enzyme, determines the concentrations of serotonin in vivo. Relative serotonin concentrations are clearly important in neural transmission, but serotonin has also been reported to function as a local antioxidant. Identification of the mechanisms regulating TPH activity has been hindered by its low levels in tissues and the instability of the enzyme. Several TPH expression systems have been developed to circumvent these problems. In addition, eukaryotic expressions systems are currently being developed and represent a new avenue of research for identifying TPH regulatory mechanisms. Recombinant DNA technology has enabled the synthesis of TPH deletions, chimeras, and point mutations that have served as tools for identifying structural and functional domains within TPH. Notably, the experiments have proven long-held hypotheses that TPH is organized intoN-terminal regulatory and C-terminal catalytic domains, that serine-58 is a site for PKA-mediated phosphorylation, and that a C-terminal leucine zipper is involved in formation of the tetrameric holoenzyme. Several new findings have also emerged regarding regulation of TPH activity by posttranslational phosphorylation, kinetic inhibition, and covalent modification. Inhibition of TPH byl-DOPA may have implications for depression in Parkinson’s disease (PD) patients. In addition, TPH inactivation by nitric oxide may be involved in amphetamine-induced toxicity. These regulatory concepts, in conjunction with new systems for studying TPH activity, are the focus of this article.

Index Entries

Tryptophan hydroxylase regulation serotonin phosphorylation nitric oxide biogenic amines l-DOPA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate C. and Joh T. H. (1991) Limited proteolysis of rat brain tyrosine hydroxylase defines an N-terminal region required for regulation of cofactor binding and directing substrate specificity.J. Mol. Neurosci. 2, 203–215.PubMedGoogle Scholar
  2. Abate C., Smith J. A., and Joh T. H. (1988) Characterization of the catalytic domain of bovine adrenal tyrosine hydroxylase.Biochem. Biophys. Res. Commun. 151, 1446–1453.PubMedCrossRefGoogle Scholar
  3. Agid Y., Cervera P., Hirsch E., Javoy-Agid F., Lehericy S., Raismann R., et al. (1989) Biochemistry of Parkinson’s disease 28 years later: a critical review.Mov. Disord. 4, 126–144.CrossRefGoogle Scholar
  4. Banik U., Wang G., Wanger P. D., and Kaufman S. (1997) Interaction of phosphorylated tryptophan hydroxylase with 14-3-3 protein.J. Biol. Chem. 42, 26,219–26,225.Google Scholar
  5. Barasch J. M., Tamir H., Nunez E. A., and Gershon M. D. (1987) Serotonin-storing secretory granules from thyroid parafollicular cells.J. Neurosci. 7, 4017–4033.PubMedGoogle Scholar
  6. Bartholini G., Da Prada M., and Pletscher A. (1968) Decrease of cerebral 5-hydroxytryptamine by 3,4-dihyrdophenylalanine after inhibition of extracerebral decarboxylase.J. Pharm. Pharmacol. 20, 228–229.PubMedGoogle Scholar
  7. Boadle-Biber M. C. (1993) Regulation of serotonin synthesis.Prog. Biophys. Mol. Biol. 60, 1–15.PubMedCrossRefGoogle Scholar
  8. Bonnefoy E., Ferrara P., Rohrer H., Gros F., and Thibault J. (1988) Role of the N-terminus of rat pheochromocytoma tyrosine hydroxylase in the regulation of the enzyme’s activity.Eur. J. Biochem. 174, 685–690.PubMedCrossRefGoogle Scholar
  9. Boston P. F., Jackson P., Kynoch P. A., and Thompson R. J. (1982) Purification and immunohistochemical localisation of human brain 14-3-3.J. Neurochem. 38, 1466–1474.PubMedCrossRefGoogle Scholar
  10. Boularand S., Darmon M. C., Ganem Y., Launay J. M., and Mallet J. (1990) Complete coding sequence of human tryptophan hydroxylase.Nucleic Acids Res. 18, 4257.PubMedCrossRefGoogle Scholar
  11. Campbell D. G., Hardie D. G., and Vulliet P. R. (1986) Identification of the four phosphorylation sites in the N-terminal region of tyrosine hydroxylase.J. Biol. Chem. 261, 10,489–10,492.Google Scholar
  12. Cash C. D. P., Vayer P., Mandel P., and Maitre M. (1985) Tryptophan 5-hydroxylase: rapid purification from whole brain and production of specific antiserum.Eur. J. Biochem. 149, 239–245.PubMedCrossRefGoogle Scholar
  13. Champier J., Claustrat B., Besancon R., Eymin C., Killer C., Jouvet A., et al. (1997) Evidence for tryptophan hydroxylase and hydroxy-indole-o-methyl-transferase mRNAs in human blood platelets.Life Sci. 60, 2191–2197.PubMedCrossRefGoogle Scholar
  14. Chong S. R., Mersha F. B., Comb D. G., Scott M. E., Landry D., Vence L. M., et al. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element.Gene 192, 271–281.PubMedCrossRefGoogle Scholar
  15. Clark M. S., Lanigan T. M., Page N. M., and Russo A. F. (1995a) Induction of a serotonergic and neuronal phenotype in thyroid C cells.J. Neurosci. 15, 6167–6178.PubMedGoogle Scholar
  16. Clark M. S., Lanigan T. M., and Russo A. F. (1995b) Serotonergic neuronal properties in C cell lines.Methods: A Companion to Methods Enzymol. 7, 253–261.CrossRefGoogle Scholar
  17. Cool D. R., Leibach F. H., Bhalla V. K., Mahesh V. B., and Ganapathy V. (1991) Expression and cyclic AMP-dependent regulation of a high affinity serotonin transporter in the human placental choriocarcinoma cell line (JAR).J. Biol. Chem. 266, 15,750–15,757.Google Scholar
  18. Cummings J. L. (1992) Depression and Parkinson’s disease: a review.Am. J. Psych. 149, 443,444.Google Scholar
  19. Darmon M. C., Guibert B., Leviel V., Ehret M., Maitre M., and Mallet J. (1988) Sequence of two mRNAs encoding active rat tryptophan hydroxylase.J. Neurochem. 51, 312–316.PubMedCrossRefGoogle Scholar
  20. Daubner S. C., and Fitzpatrick P. F. (1993) Lysine241 of tyrosine hydroxylase is not required for binding of tetrahydrobiopterin substrate.Arch. Biochem. Biophys. 302, 455–460.PubMedCrossRefGoogle Scholar
  21. Daubner S. C., Loshe D. L., and Fitzpatrick P. F. (1993) Expression and characterization of catalytic and regulatory domains of rat tyrosine hydroxylase.Protein. Sci. 2, 1452–1460.PubMedGoogle Scholar
  22. Daubner S. C. and Piper M. M. (1995) Deletion mutants of tyrosine hydroxylase identify a region critical for heparin binding.Protein Sci. 4, 538–541.PubMedCrossRefGoogle Scholar
  23. Daubner S. C., Hillas P. J., and Fitzpatrick P. F. (1997) Characterization of chimeric pterin-dependent hydroxylases: contributions of the regulatory domains of tyrosine and phenylalanine hydroxylase to substrate specificity.Biochemistry 36, 11,574–11,582.CrossRefGoogle Scholar
  24. Delort J., Dumas J. B., Darmon M. C., and Mallet J. (1989) An efficient strategy for cloning 5′ extremities of rare transcripts permits isolation of multiple 5′-untranslated regions of rat tryptophan hydroxylase mRNA.Nucleic Acids Res. 17, 6439–6448.PubMedCrossRefGoogle Scholar
  25. Dickson P. W., Jennings I. G., and Cotton R. G. H. (1994) Delineation of the catalytic core of phenylalanine hydroxylase and identification of glutamate 286 as a critical residue for pterin function.J. Biol. Chem. 269, 20,369–20,375.Google Scholar
  26. Doskeland A. P., Martinez A., Knappskog P. M., and Flatmark T. (1996) Phosphorylation of recombinant human phenylalanine hydroxylase: effect on catalytic activity, substrate activation and protection against non-specific cleavage of the fusion protein by restriction proteases.Biochem. J. 313, 409–414.Google Scholar
  27. D’Sa C., Arthur R., Jennings I., Cotton R. G. H., and Kuhn D. M. (1996a) Tryptophan hydroxylase: purification by affinity chromatography on calmodulin-sepharose.J. Neurosci. Methods 69, 149–153.CrossRefGoogle Scholar
  28. D’Sa C. M., Arthur R. E. Jr., States C., and Kuhn D. M. (1996b) Tryptophan hydroxylase: cloning and expression of the rat brain enzyme in mammalian cells.J. Neurochem. 67, 900–906.CrossRefGoogle Scholar
  29. D’Sa C. M., Arthur R. E. Jr., and Kuhn D. M. (1996c) Expression and deletion mutagenesis of tryptophan hydroxylase fusion proteins: Delineation of the enzyme catalytic core.J. Neurochem. 67, 917–926.CrossRefGoogle Scholar
  30. Eaton M. J., Staley J. K., Globus M. Y., and Whittemore S. R. (1995) Developmental regulation of early serotonergic neuronal differentiation: the role of brain derived neurotrophic factor and membrane depolarization.Dev. Biol. 170, 169–182.PubMedCrossRefGoogle Scholar
  31. Eaton M. J. and Whittemore S. R. (1995) Adrenocorticotropic hormone activation of adenylate cyclase in the raphe neurons: multiple regulatory pathways control serotonergic neuronal differentiation.J. Neurobiol. 28, 465–81.PubMedCrossRefGoogle Scholar
  32. Ehret M., Cash C. D., Hamon M., and Maitre M. (1989) Partial demonstration of the phosphorylation of rat brain tryptophan hydroxylase by Ca2+/calmodulin-dependent protein kinase.J. Neurochem. 52, 1886–1891.PubMedCrossRefGoogle Scholar
  33. Ehret M., Pevet P., and Maitre M. (1991) Tryptophan hydroxylase synthesis is induced by 3′, 5′-cyclic monophosphate during circadian rhythm in the rat pineal gland.J. Neurochem. 57, 1516–1521.PubMedCrossRefGoogle Scholar
  34. Elkins K. W., Gibb J. W., Hanson G. R., Wilkins D. G., and Johnson M. (1993) Effects of nimodipine on the amphetamine- and methamphetamine-induced decrease in tryptophan hydroxylase activity.Eur. J. Pharm. 250, 395–402.CrossRefGoogle Scholar
  35. Erlandsen H., Martinez A., Knappskog P. M., Haavik J., Hough E., and Flatmark T. (1997a) Crystallization and preliminary diffraction analysis of a truncated homodimer of human phenylalanine hydroxylase.FEBS Lett. 406, 171–174.PubMedCrossRefGoogle Scholar
  36. Erlandsen H., Fusetti F., Martinez A., Hough E., Flatmark T., and Stevens R. C. (1997b) Crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals the structural basis for phenylketonuria.Nature Struct. Biol. 4, 995–1000.PubMedCrossRefGoogle Scholar
  37. Fisher D. B. and Kaufman S. (1972) The stimulation of rat liver phenylalanine hydroxylase by phospholipids.J. Biol. Chem. 247, 2250–2252.PubMedGoogle Scholar
  38. Florez J. C. and Takahashi J. S. (1996) Regulation of tryptophan hydroxylase by cyclic AMP, calcium, norepinephrine and light in cultured pineal cells.J. Neurochem. 67, 242–250.CrossRefGoogle Scholar
  39. Friedman P. A., Kappelman A. H., and Kaufman S. (1972) Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain.J. Biol. Chem. 247, 4165–4173.PubMedGoogle Scholar
  40. Fujisawa H. and Nakata H. (1987) Tryptophan 5-monooxygenase from mouse mastocytoma clone P815.Methods Enzymol. 142, 93–96.PubMedGoogle Scholar
  41. Furukawa Y., Ikuta N., Omata S., Yamauchi T., Isobe T., and Ichimura T. (1993) Demonstration of the phosphorylation-dependent interaction of tryptophan hydroxylase with the 14-3-3 protein.Biochem. Biophys. Res. Commun. 194, 144–149.PubMedCrossRefGoogle Scholar
  42. Gershon M. D. (1981) The enteric nervous system.Annu. Rev. Neurosci. 4, 227–272.PubMedCrossRefGoogle Scholar
  43. Gershon M. D. and Tamir H. (1997) Regulation of the environment of the interior of serotonin-storing vesicles.Handbook Exp. Pharmacol. 129, 153–174.Google Scholar
  44. Gibb J. W., Johnson M., and Hanson G. R. (1990) Neurochemical basis of neurotoxicity.Neurotoxicology 11, 317–321.PubMedGoogle Scholar
  45. Gibb J. W., Johnson M., Stone D. M., and Hanson G. R. (1993) Mechanisms mediating biogenic amine deficits induced by amphetamine and its congeners.NIDA Res. Monogr. 136, 226–236.PubMedGoogle Scholar
  46. Goodwill K. E., Sabatier C., Marks C., Eaag R., Fitzpatrick P. F., and Stevens R. C. (1997) Crystal structure of tyrosine hydroxylase at 2.3 Å and its implications for inherited neurodegenerative diseases.Nature Struct. Biol. 4, 578–585.PubMedCrossRefGoogle Scholar
  47. Grenett H. E., Ledley F. D., Reed L. L., and Woo S. L. C. (1987) Full-length cDNA for rabbit tryptophan hydroxylase: Functional domains and evolution of aromatic amino acid hydroxylases.Proc. Natl. Acad. Sci. USA 84, 5530–5534.PubMedCrossRefGoogle Scholar
  48. Hasegawa H., Kojima M., Oguro K., and Nakanishi N. (1995) Rapid turnover of tryptophan hydroxylase in serotonin producing cells: demonstration of ATP-dependent proteolytic degradation.FEBS Lett. 368, 151–154.PubMedCrossRefGoogle Scholar
  49. Hasegawa H., Kojima M., Iida Y., Oguro K., and Nakanishi N. (1996) Stimulation of tryptophan hydroxylase production in a serotonin-producing cell line (RBL2H3) by intracellular calcium mobilizing reagents.FEBS Lett. 392, 289–292.CrossRefGoogle Scholar
  50. Huether G. and Schuff-Werner P. (1996) Platelet serotonin acts a locally releasable antioxidant, inRecent Advances in Tryptophan Research (Filippini P. L., et al. eds.), Plenum, New York.Google Scholar
  51. Hufton S. E., Jennings I. G., and Cotton R. G. H. (1995) Structure and function of the aromatic amino acids hydroxylases.J. Biochem. 311, 353–366.Google Scholar
  52. Ichimura T., Isobe T., Okuyama T., Yamauchi T., and Fujisawa H. (1987) Brain 14-3-3 protein is an activator protein that activates tryptophan 5-mono-oxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II.FEBS Lett. 219, 79–82.PubMedCrossRefGoogle Scholar
  53. Ichimura T., Isobe T., Okuyama T., Takahashi N., Araki K., Kuwano R., et al. (1988) Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases.Proc. Natl. Acad. Sci. USA 85, 7084–7088.PubMedCrossRefGoogle Scholar
  54. Ichimura T., Uchiyama J., Kunihiro O., Ito M., Horigome T., Omata S., et al. (1995) Identification of the site of interaction of the 14-3-3 protein with phosphorylated tryptophan hydroxylase.J. Biol. Chem. 270, 28,515–28,518.Google Scholar
  55. Ishida Y., Hashiguchi H., Todaka K., Kuwahara I., and Mitsuyama Y. (1996) Dopaminergic transplants alter in vivo activity of tryptophan hydroxylase in the striatum in a rat model of Parkinson’s disease.Neurosci. Lett. 210, 75–78.CrossRefGoogle Scholar
  56. Isobe T., Ichimura T., Sunaya T., Okuyama T., Takahashi N., Kuwano R., et al. (1991) Distinct forms of the protein kinase-dependent activator of tyrosine and tryptophan hydroxylases.J. Mol. Biol. 217, 125–132.PubMedCrossRefGoogle Scholar
  57. Iwaki M., Phillips R. S., and Kaufman S. (1986) Proteolytic modification of the amino-terminal and carboxyl-terminal regions of rat hepatic phenylalanine hydroxylase.J. Biol. Chem. 261, 2051–2056.PubMedGoogle Scholar
  58. Jequier E., Robinson D. S., Lovenberg W., and Sjoerdsma A. (1969) Further studies on tryptophan hydroxylase in rat brainstem and beef pineal.Biochem. Pharmacol. 18, 1071–1081.PubMedCrossRefGoogle Scholar
  59. Joh T. H., Shikimi T., Pickel V. M., and Reis D. J. (1975) Brain tryptophan hydroxylase: Purification of, production of antibodies to, and cellular and ultrastructural localization in serotonergic neurons of rat midbrain.Proc. Natl. Acad. Sci. USA 72, 3575–3579.PubMedCrossRefGoogle Scholar
  60. Joh T. H., Hwang O., and Abate C. (1986) Phenylalanine hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase, inNeuromethods Series 1: Neurochemistry, Neurotransmitter Enzymes (Boulton A. A., Baker G. B., and Yu P. H., eds.), Humana, Clifton, NJ, pp. 1–32.Google Scholar
  61. Johansen P. A., Wolf W. A., and Kuhn D. M. (1991) Inhibition of tryptophan hydroxylase by benserazide and other catechols.Biochem. Pharmacol. 41, 625–628.PubMedCrossRefGoogle Scholar
  62. Johansen P. A., Jennings I., Cotton R. G. H., and Kuhn D. M. (1995) Tryptophan hydroxylase is phosphorylated by protein kinase A.J. Neurochem. 65, 882–888.PubMedCrossRefGoogle Scholar
  63. Johansen P. A., Jennings I., Cotton R. G. H., and Kuhn D. M. (1996) Phosphorylation and activation of tryptophan hydroxylase by exogenous protein kinase A.J. Neurochem. 66, 817–823.CrossRefGoogle Scholar
  64. Kaufman S. (1987) Aromatic amino acid hydroxylases.Enzymes 18, 217–282.Google Scholar
  65. Kaufman S. (1993) The phenylalanine hydroxylating system.Adv. Enzy. Related Areas Mol. Biol. 67, 77–264.CrossRefGoogle Scholar
  66. Kim K. S., Wessel T. C., Stone D. M., Carver C. H., Joh T. H., and Park D. H. (1991) Molecular cloning and characterization of cDNA encoding tryptophan hydroxylase from rat central serotonergic neurons.Mol. Brain Res. 9, 277–283.PubMedCrossRefGoogle Scholar
  67. Knapp S. and Mandell A. J. (1983) Lithium and chlorimiprammine differentially alter the stability properties of tryptophan hydroxylase as seen in allosteric and scattering kinetics.Psych. Res. 8, 311–323.CrossRefGoogle Scholar
  68. Komatsu K. and Nakamura W. (1989) Combined effect of cis-DDP (II), OK-432 and systemic hyperthermia in ascites tumor in mice.J. Jpn. Soc. Cancer Ther. 24, 626–637.Google Scholar
  69. Kostic V. S., Djricic B. M., Covickovic-Sternic N., Bumbasirevic L., Nikoliv M., and Mrsulja B. B. (1987) Depression and Parkinson’s disease: possible role of serotonergic mechanisms.J. Neurol. 234, 94–96.PubMedCrossRefGoogle Scholar
  70. Kowlessur D., Yang X. J., and Kaufman S. (1995) Further studies of the role of ser-16 in the regulation of the activity of phenylalanine hydroxylase.Proc. Natl. Acad. Sci. USA 92, 4743–4747.PubMedCrossRefGoogle Scholar
  71. Kuhn D. M. and Arthur R. E. Jr. (1996) Inactivation of brain tryptophan hydroxylase by nitric oxide.J. Neurochem. 67, 1072–1077.CrossRefGoogle Scholar
  72. Kuhn D. M. and Arthur R. E. Jr. (1997a) Inactivation of tryptophan hydroxylase by nitric oxide: enhancement by tetrahydrobiopterin.J. Neurochem. 68, 1495–1502.PubMedCrossRefGoogle Scholar
  73. Kuhn D. M. and Arthur R. E. Jr. (1997b) Molecular mechanism of the inactivation ot tryptophan hydroxylase by nitric oxide: attack on critical sulfhydryls that spare the enzyme iron center.J. Neurosci. 17, 7245–7251.PubMedGoogle Scholar
  74. Kuhn D. M., Rosenberg R. C., and Lovenberg W. (1979) Determination of some molecular parameters of tryptophan hydroxylase from rat midbrain and murine mast cell.J. Neurochem. 33, 15–21.PubMedCrossRefGoogle Scholar
  75. Kuhn D. M., Ruskin B., and Lovenberg W. (1980) Tryptophan hydroxylase: Role of oxygen, iron, sulfhydryl groups as determinants of stability and catalytic activity.J. Biol. Chem. 255, 4137–4143.PubMedGoogle Scholar
  76. Kuhn D. M., Arthur R. A. Jr., and States J. C. (1997) Phosphorylation and activation of brain tryptophan hydroxylase: Identification of serine-58 as a substrate site for protein kinase A.J. Neurochem. 68, 2220–2223.PubMedCrossRefGoogle Scholar
  77. Kuhn W., Muller T., Gerlach M., Sofic E., Fuchs G., Heye N., et al. (1996) Depression in Parkinson’s disease: biogenic amines in CSF of ‘de novo’ patients.J. Neural. Transm. 103, 1441–1445.CrossRefGoogle Scholar
  78. Kumer S. C., Mockus S. M., Rucker P. J., and Vrana K. E. (1997) Amino terminal deletion analysis of tryptophan hydroxylase: PKA phosphorylation occurs at serine-58.J. Neurochem. 69, 1738–1745.PubMedCrossRefGoogle Scholar
  79. Ledley F. D., DiLella A. G., Kwok S. C. M., and Woo S. L. C. (1985) Homology between phenylalanine and tyrosine hydroxylase reveals common structural and functional domains.Biochemistry 24, 3389–3394.PubMedCrossRefGoogle Scholar
  80. Leong S. S., Horoszewicz J. S., Shimaoka K., Friedman M., Kawinski E., Song M. J., et al. (1981) A new cell line for the study of human medullary thyroid carcinoma, inAdvances in Thyroid Neoplasia (Andreoli M., Manaco F., and Robbins J., eds.), Field Educational Italia, Rome, pp. 95–108.Google Scholar
  81. Liu X. and Vrana K. E. (1991) Leucine zippers and coiled-coils in the aromatic amino acid hydroxylases.Neurochem. Int. 18, 27–31.CrossRefPubMedGoogle Scholar
  82. Lohse D. L. and Fitzpatrick P. F. (1993) Identification of the intersubunit binding region in rat tyrosine hydroxylase.Biochem. Biophys. Res. Commun. 197, 1543–1548.PubMedCrossRefGoogle Scholar
  83. Lovenberg W., Jequier E., and Sjoerdsma A. (1967) Tryptophan hydroxylation: measurement in pineal gland, brainstem and carcinoid tumor.Science 155, 217–219.PubMedCrossRefGoogle Scholar
  84. Makita Y., Okuno S., and Fujisawa H. (1990) Involvement of activator protein in the activation of tryptophan hydroxylase by cAMP-dependent protein kinase.FEBS Lett. 268, 185–188.PubMedCrossRefGoogle Scholar
  85. Mann J. J., Malone K. M., Nielsen D. A., Goldman D., Erdos J., and Gelernter J. (1997) Possible association of a polymorphism of the tryptophan hydroxylase gene with suicidal behavior in depressed patients.Am. J. Psychiatry 154, 1451–1453.PubMedGoogle Scholar
  86. Marston F. A. O. (1986) The purification of eukaryotic polypeptides synthesized inEscherichia coli.Biochem. J. 240, 1–12.PubMedGoogle Scholar
  87. Maruyama W., Naoi M., Takahashi A., Watanabe H., Konagaya Y., Mokuno K., et al. (1992) The mechanism of perturbation in monoamine metabolism byl-DOPA therapy: in vivo and in vitro studies.J. Neural. Transm. 90, 183–197.CrossRefGoogle Scholar
  88. Mayeux R., Stern Y., Cote L., and Williams J. B. W. (1984) Altered serotonin metabolism in depressed patients with Parkinson’s’s disease.Neurology 34, 642–646.PubMedGoogle Scholar
  89. Mayeux R., Stern Y., Williams J. B. W., Cote L., Frantz A., and Dyrenfurth I. (1986) Clinical and biochemical features of depression in Parkinson’s disease.Am. J. Psychiatry 143, 756–759.PubMedGoogle Scholar
  90. Mayeux R., Stern Y., Sano M., Williams J. B. W., and Cote L. J. (1988) The relationship of serotonin to depression in Parkinson’s’s disease.Mov. Disord. 3, 1813,1814.CrossRefGoogle Scholar
  91. Meek J. L. and Neff N. H. (1972) Tryptophan 5-hydroxylase: approximation of half-life and rate of axonal transport.J. Neurochem. 19, 1519–1525.PubMedCrossRefGoogle Scholar
  92. Miguez J. M., Simonneaux V., and Pevet P. (1997) The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes.J. Pineal Res. 23, 63–71.PubMedCrossRefGoogle Scholar
  93. Mitraki A., Fane B., Haase-Pettingell C., Sturtevant J., and King J. (1991) Global suppression of protein folding defects and inclusion body formation.Science 253, 54–58.PubMedCrossRefGoogle Scholar
  94. Mockus S. M., Kumer S. C., and Vrana K. E. (1997a) A chimeric tyrosine/tryptophan hydroxylase: The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity.J. Mol. Neurosci. 9, 35–48.PubMedGoogle Scholar
  95. Mockus S. M., Kumer S. C., and Vrana K. E. (1997b) Carboxyl terminal deletion analysis of tryptophan hydroxylase.Biochim. Biophys. Acta 1342, 132–140.PubMedGoogle Scholar
  96. Mockus S. M., Yohrling G. Y., and Vrana K. E. (1998) Tyrosine hydroxylase and tryptophan hydroxylase do not form heterotetramers.J. Mol. Neurosci. 10, 45–51.PubMedCrossRefGoogle Scholar
  97. Moan G. R., Daubner S. C., and Fitzpatrick P. F. (1998)J. Biol. Chem. 273, 12,259–12,266.Google Scholar
  98. Murray A. J., Lewis S. J., Barclay A. N., and Brady R. L. (1995) One sequence, two folds: a mestastable structure of CD2.Proc. Natl. Acad. Sci. USA 92, 7337–7341.PubMedCrossRefGoogle Scholar
  99. Muszynski M., Birnbaum R. S., and Roos B. (1983) Glucocorticoids stimulate the production of preprocalcitonin-derived secretory peptides by a rat medullary thyroid carcinoma cell line.J. Biol. Chem. 258, 11,678–11,683.Google Scholar
  100. Nakata H. and Fujisawa H. (1982a) Purification and properties of tryptophan 5-monoxygenase from rat brain-stem.Eur. J. Biochem. 122, 41–47.PubMedCrossRefGoogle Scholar
  101. Nakata H. and Fujisawa H. (1982b) Tryptophan 5-monoxygenase from mouse mastocytoma.Eur. J. Biochem. 124, 595–601.PubMedCrossRefGoogle Scholar
  102. Naoi M., Maruyama W., Takahashi T., Ota M., and Parvez H. (1994) Inhibition of tryptophan hydroxylase by dopamine and the precursor amino acids.Biochem. Pharmacol. 48, 207–212.PubMedCrossRefGoogle Scholar
  103. Neckameyer W. S. and White K. (1992) A single locus encodes both phenylalanine hydroxylase and tryptophan hydroxylase activities inDrosophila.J. Biol. Chem. 267, 4199–4206.PubMedGoogle Scholar
  104. Nielsen D. A., Dean M., and Goldman D. (1992) Genetic mapping of the human tryptophan hydroxylase gene on chromosome 11, using an intronic conformational polymorphism.Am. J. Hum. Genet. 51, 1366–1371.PubMedGoogle Scholar
  105. Nielsen D. A., Goldman D., Virkkunen M., Tokola R., Rawlings R., and Linnoila M. (1994) Suicidality and 5-hydroxyindoleacetic acid concentration associated with a tryptophan hydroxylase polymorphism.Arch. Gen. Psychiatry 51, 34–38.PubMedGoogle Scholar
  106. Nukiwa T., Tohyama C., Okita T., and Ichiyama A. (1982) Purification and some properties of bovine pineal tryptophan 5-monooxygenase.Biochem. Biophys. Res. Commun. 60, 1029–1035.CrossRefGoogle Scholar
  107. Nunez E. A. and Gershon M. D. (1972) Synthesis and storage of serotonin by parafollicular (C) cells of the thyroid gland of active, prehibernating and hibernating bats.Endocrinology 90, 1008–1024.PubMedCrossRefGoogle Scholar
  108. Osborne N. N. (1980) In vitro experiments on the metabolism, uptake and release of 5-hydroxytryptamine in bovine retina.Brain Res. 184, 283–297.PubMedCrossRefGoogle Scholar
  109. Ota A., Yoshida S., and Nagatsu T. (1995) Deletion mutagenesis of human tyrosine hydroxylase type 1 regulatory domain.Biochem. Biophys. Res. Commun. 213, 1099–1106.PubMedCrossRefGoogle Scholar
  110. Ota A., Yoshida S., and Nagatsu T. (1996) Regulation of N-terminus-deleted human tyrosine hydroxylase type 1 by end products of catecholamine biosynthetic pathway.J. Neural Transm. 103, 1415–1428.CrossRefGoogle Scholar
  111. Park D. H., Stone D. M., Kim K. S., and Joh T. H. (1994) Characterization of recombinant mouse tryptophan hydroxylase expressed inEscherichia coli.Mol. Cell. Neurosci. 5, 87–93.PubMedCrossRefGoogle Scholar
  112. Perler F. B., Davis E. O., Dean G. E., Gimble F. S., Jack W. E., Neff N., et al. (1994) Protein splicing elements: inteins and exteins—A definition of terms and recommended nomenclature.Nucleic Acids. Res. 22, 1125–1127.PubMedCrossRefGoogle Scholar
  113. Quinsey N. S., Lenaghan C. M., and Dickson P. W. (1996) Identification of Gln313 and Pro327 as residues critical for substrate inhibition in tyrosine hydroxylase.J. Neurochem. 66, 908–914.CrossRefGoogle Scholar
  114. Ribeiro P., Wang Y., Citron B. A., and Kaufman S. (1993) Deletion mutagenesis of rat PC12 tyrosine hydroxylase regulatory and catalytic domains.J. Mol. Neurosci. 4, 125–139.PubMedGoogle Scholar
  115. Richarme G. (1982) Associative properties of theEscherichia coli galactose binding protein and maltose binding protein.Biochem. Biophys. Res. Commun. 105, 476–481.PubMedCrossRefGoogle Scholar
  116. Richarme G. (1983) Associative properties of theEscherichia coli galactose-binding protein and maltose-binding protein.Biochim. Biophys. Acta 748, 99–108.PubMedGoogle Scholar
  117. Rudge J. S., Eaton M. J., Mather P., Lindsay R. M., and Whittemore S. R. (1996) CNTF induces raphe neuronal precursors to switch from a serotonergic to a cholinergic phenotype in vitro.Mol. Cell. Neurosci. 7, 204–221.CrossRefGoogle Scholar
  118. Russo A. F., Clark M. S., and Durham P. L. (1996) Thyroid parafollicular cells: an accessible model for the study of serotonergic neurons.Mol. Neurobiol. 13, 257–275.CrossRefGoogle Scholar
  119. Sabban E. L. (1997) Control of tyrosine hydroxylase gene expression in chromaffin and PC12 cells.Semin. Cell. Dev. Biol. 8, 101–111.PubMedCrossRefGoogle Scholar
  120. Schindler R. (1958) The conversion of14C-labelled tryptophan to 5-hydroxytryptamine by neoplastic mast cells.Biochem. Pharmacol. 1, 323–332.CrossRefGoogle Scholar
  121. Seiden L. S. and Sabol K. E. (1996) Methamphetamine and methylenedioxy-methamphetamine neurotoxicity: possible mechanisms of cell destruction.NIDA Res. Monogr. 163, 251–276.Google Scholar
  122. Simantov R. and Tauber M. (1997) The abused drug MDMA (ecstasy) induces programmed death of human serotonergic cells.FASEB J. 11, 141–146.PubMedGoogle Scholar
  123. Sitaram B. R. and Lees G. (1978) Diurnal rhythm and turnover of tryptophan hydroxylase in the pineal gland of the rat.J. Neurochem. 21, 1021–1026.CrossRefGoogle Scholar
  124. Sjoerdsma A., Waalkes T. P., and Weissbach H. (1957) Serotonin and histamine in mast cells.Science 125, 1202.PubMedCrossRefGoogle Scholar
  125. Son J. H., Chung J. H., Huh S. O., Park D. H., Peng C., Rosenblum M. G., et al. (1996) Immortalization of neuroendocrine pinealocytes from transgenic mice by targeted tumorigenesis using the tryptophan hydroxylase promoter.Mol. Brain Res. 37, 32–40.CrossRefGoogle Scholar
  126. Steele T. D., McCann U. D., and Ricuarte G. A. (1994) 3,4-methylenedioxy-methamphetamine (MDMA, “ecstasy”): pharmacology and toxicology in animals and humans.Addiction 89, 539–551.PubMedCrossRefGoogle Scholar
  127. Stoll J., Kozak C. A., and Goldman D. (1990) Characterization and chromosomal mapping of a cDNA encoding tryptophan hydroxylase from a mouse mastocytoma cell line.Genomics 7, 88–96.PubMedCrossRefGoogle Scholar
  128. Stone D. M., Hanson G. R., and Gibb J. W. (1989a) In vitro reactivation of rat cortical tryptophan hydroxylase following in vivo inactivation by methylenedioxymethamphetamine.J. Neurochem. 53, 572–581.PubMedCrossRefGoogle Scholar
  129. Stone D. M., Johnson M., Hanson G. R., and Gibb J. W. (1989b) Acute inactivation of tryptophan hydroxylase by amphetamine analogs involves the oxidation of sulfhydryl sites.Eur. J. Pharmacol. 172, 93–97.PubMedCrossRefGoogle Scholar
  130. Tamir H., Liu K., Payette R. F., Hsiung S., Adlersberg M., Nunez E. A., et al. (1989) Human medullary thyroid carcinoma: characterization of the serotonergic and neuronal properties of a neuroectodermally derived cell line.J. Neurosci. 9, 1199–1212.PubMedGoogle Scholar
  131. Tamir H., Hsiung S., Adlersberg M., Nunez E., and Gershon M. D. (1990) Multiple signals leading to the secretion of 5-hydroxytryptamine by MTC cells, a neuroectodermally derived cell line.J. Neurosci. 10, 3743–3753.PubMedGoogle Scholar
  132. Thomas K. B., Tigges M., and Iuvone P. M. (1993) Melatonin synthesis and circadian tryptophan hydroxylase activity in chicken retina following destruction of serotonin immunoreactive amacrine and bipolar cells by kainic acid.Brain Res. 601, 303–307.PubMedCrossRefGoogle Scholar
  133. Tipper J. P., Citron B. A., Ribeiro P., and Kaufman S. (1994) Cloning and expression of rabbit human brain tryptophan hydroxylase cDNA inEscherichia coli.Arch. Biochem. Biophys. 315, 445–453.PubMedCrossRefGoogle Scholar
  134. Tong J. H. and Kaufman S. (1975) Tryptophan hydroxylase: purification and some properties of the enzyme from rabbit hindbrain.J. Biol. Chem. 250, 4152–4158.PubMedGoogle Scholar
  135. Vitto A. and Mandell A. J. (1981) Stability properties of activated tryptophan hydroxylase from rat midbrain.J. Neurochem. 37, 601–607.PubMedCrossRefGoogle Scholar
  136. Vrana K. E., Rucker P. J., and Kumer S. C. (1994a) Recombinant rabbit tryptophan hydroxylase is a substrate for cAMP-dependent protein kinase.Life Sci. 55, 1045–1052.PubMedCrossRefGoogle Scholar
  137. Vrana K. E., Walker S. J., Rucker P., and Liu X. (1994b) A carboxyl terminal leucine zipper is required for tyrosine hydroxylase tetramer formation.J. Neurochem. 63, 2014–2020.PubMedCrossRefGoogle Scholar
  138. Walker J., Crowley P., Moreman A. D., and Barrett J. (1993) Biochemical properties of cloned glutathione S-transferases fromSchistosoma mansoni andSchistosoma japonicum.Mol. Biochem. Parasitol. 61, 255–264.PubMedCrossRefGoogle Scholar
  139. Walker S. J., Liu X., Roskoski R. Jr., and Vrana K. E. (1994) Catalytic core of rat tyrosine hydroxylase: Terminal deletion analysis of bacterially-expressed enzyme.Biochim. Biophys. Acta 1206, 113–119.PubMedGoogle Scholar
  140. White L. A., Eaton M. J., Castro M. C., Klose K. J., Globus M. Y. T., Shaw G., et al. (1994) Distinct regulatory pathways control neurofilament expression and neurotransmitter synthesis in immortalized serotonergic neurons.J. Neurosci. 14, 6744–6753.PubMedGoogle Scholar
  141. Widmer F., Mutus B., RamaMurthy J., Snieckus V. A., and Viswanatha T. (1975) Partial purification of rabbit hind brain tryptophan hydroxylase by affinity chromatography.Life Sci. 17, 1297–1302.PubMedCrossRefGoogle Scholar
  142. Wu J., Filer D., Friedhoff A. J., and Goldstein M. (1992) Site-directed mutagenesis of tyrosine hydroxylase. Role of serine-40 in catalysis.J. Biol. Chem. 267, 25,754–25,758.Google Scholar
  143. Yamauchi T., Nakata H., and Fujisawa H. (1981) A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase.J. Biol. Chem. 256, 5404–5409.PubMedGoogle Scholar
  144. Yang X. J. and Kaufman S. (1994) High-level expression and deletion mutagenesis of human tryptophan hydroxylase.Proc. Natl. Acad. Sci. USA 91, 6659–6663.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Susan M. Mockus
    • 1
  • Kent E. Vrana
    • 2
  1. 1.Program in Neuroscience and Department of Physiology and PharmacologyWake Forest University School of MedicineWinston-Salem
  2. 2.Center for the Neurobiological Investigation of Drug Abuse, Department of Physiology and PharmacologyWake Forest University School of MedicineWinston-Salem

Personalised recommendations