Israel Journal of Mathematics

, Volume 42, Issue 4, pp 343–352

A special family of ergodic flows and their\(\bar d - limits\)

  • Kyewon Koh Park
Article

Abstract

A flow built under a step function with a multi-step Markov partition on the base is a direct product of a Bernoulli flow with a finite rotation. A\(\bar d - limit\) of the flows in this family cannot have two irrationally related rotation factors.\(\bar d - closure\) of this family is shown to consist of all direct products of Bernoulli flows and flows of rational pure point spectrum with respect to some number.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Adler, P. Shields and M. Smorodinsky,Irreducible Markov shifts, Ann. Math. Stat.43 (1972), 1027–1029.MathSciNetGoogle Scholar
  2. 2.
    A Fieldsteel,The relative isomorphism theorem for Bernoulli flows, Dissertation of Berkeley, 1979.Google Scholar
  3. 3.
    B. M. Gurevič,A special class of automorphisms and special flows, Dokl. Akad. Nauk4 (1964), 1738–1741.Google Scholar
  4. 4.
    D. S. Ornstein,Bernoulli shifts with the same entropy are isomorphic, Adv. Math.4 (1970), 337–352.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. S. Ornstein,The isomorphism theorem for Bernoulli flows, Adv. Math.10 (1973), 124–142.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D. S. Ornstein,Ergodic Theory, Randomness, and Dynamical Systems, Yale University Press, 1974.Google Scholar
  7. 7.
    K. Park, Nice dense subsets of ergodic flows and Bernoulli flows, to appear.Google Scholar
  8. 8.
    D. J. Rudolph and G. Schwarz, The limits in {ie352-1} of multi-step Markov chains, Isr. J. Math.28, (1977), 103–109.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    P. Shields,The Theory of Bernoulli Shifts, Chicago University Press, Chicago, 1973.MATHGoogle Scholar
  10. 10.
    J.-P. Thouvenot,Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schéma de Bernoulli, Isr. J. Math.21 (1975), 177–207.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1982

Authors and Affiliations

  • Kyewon Koh Park
    • 1
  1. 1.Department of mathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations