Israel Journal of Mathematics

, Volume 40, Issue 3–4, pp 275–290

Special bases forSN and GL(n)

  • Corrado de Concini
  • David Kazhdan


The special basis in spaces of finite dimensional representation ofSN and GL(n) is constructed and its properties are studied.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Borel and J. C. Moore,Homology theory for locally compact spaces, Michigan Math. J.7 (1960), 137–153.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D. Kazhdan and G. Lusztig,Representation of Coxeter group and Hecke Algebras, Invent. Math.53 (1979), 165–184.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Kazhdan and G. Lusztig,A topological approach to Springer’s representations, to appear.Google Scholar
  4. 4.
    G. de B. Robinson,Representation Theory of the Symmetric Group, University of Toronto Press, 1961.Google Scholar
  5. 5.
    N. Spaltenstein,On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology16 (1977), 203–204.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    T. A. Springer,Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math.36 (1976), 173–204.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    T. A. Springer,A construction of representations of Weyl groups, Invent. Math.44 (1978), 279–293.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. Steinberg,On the desingularization of the Unipotent Variety, Invent. Math.36 (1976), 209–224.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    H. Weyl,The Classical Groups, Princeton, 1936.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1981

Authors and Affiliations

  • Corrado de Concini
    • 1
    • 2
  • David Kazhdan
    • 1
    • 2
  1. 1.Department of MathematicsBrandeis UniversityWalthamUSA
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations