Israel Journal of Mathematics

, Volume 40, Issue 3–4, pp 197–216 | Cite as

The relative isomorphism theorem for Bernoulli flows

  • Adam Fieldsteel
Article

Abstract

In this paper we extend the work of Thouvenot and others on Bernoulli splitting of ergodic transformations to ergodic flows of finite entropy. We prove that ifA is a factor of a flowS, whereS 1 is ergodic andA has a Bernoulli complement inS 1, thenA has a Bernoulli complement inS. Consequently, Bernoulli splitting for flows is stable under taking intermediate factors and certain\(\bar d\) limits. In addition it follows that the property of isomorphism with a Bernoulli × zero entropy flow is similarly stable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Feldman,r-Entropy, equipartition, and Ornstein’s isomorphism theorem in R n, Israel J. Math.36 (1980), 321–345.MATHMathSciNetGoogle Scholar
  2. 2.
    D. A. Lind,Locally compact measure-preserving flows, Advances in Math.15 (1975), 175–193.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. A. Lind,The isomorphism theorem for multidimensional Bernoulli flows, preprint.Google Scholar
  4. 4.
    D. S. Ornstein,Bernoulli shifts with the same entropy are isomorphic, Advances in Math.4 (1970), 337–352.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. S. Ornstein,The isomorphism theorem for Bernoulli flows, Advances in Math.10 (1973), 124–142.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D. S. Ornstein,Ergodic Theory, Randomness, and Dynamical Systems, Yale Univ. Press, New Haven, 1974.MATHGoogle Scholar
  7. 7.
    A. Rothstein, unpublished notes, Stanford University.Google Scholar
  8. 8.
    P. Shields and J.-P. Thouvenot, Entropy zero × Bernoulli processes are closed in the {ie216-1}, Ann. Probability3 (1975), 732–736.MATHMathSciNetGoogle Scholar
  9. 9.
    J. P. Thouvenot,Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schème de Bernoulli, Israel J. Math.21 (1975), 177–203.MATHMathSciNetGoogle Scholar
  10. 10.
    J.-P. Thouvenot,Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie, Israel J. Math.21 (1975), 208–214.MATHMathSciNetGoogle Scholar
  11. 11.
    N. Wiener,The ergodic theorem, Duke Math. J.5 (1939), 1–18.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1981

Authors and Affiliations

  • Adam Fieldsteel
    • 1
  1. 1.Department of MathematicsWesleyan UniversityMiddletownUSA

Personalised recommendations