Israel Journal of Mathematics

, Volume 40, Issue 3–4, pp 197–216

# The relative isomorphism theorem for Bernoulli flows

Article

## Abstract

In this paper we extend the work of Thouvenot and others on Bernoulli splitting of ergodic transformations to ergodic flows of finite entropy. We prove that ifA is a factor of a flowS, whereS 1 is ergodic andA has a Bernoulli complement inS 1, thenA has a Bernoulli complement inS. Consequently, Bernoulli splitting for flows is stable under taking intermediate factors and certain$$\bar d$$ limits. In addition it follows that the property of isomorphism with a Bernoulli × zero entropy flow is similarly stable.

## Preview

### References

1. 1.
J. Feldman,r-Entropy, equipartition, and Ornstein’s isomorphism theorem in R n, Israel J. Math.36 (1980), 321–345.
2. 2.
D. A. Lind,Locally compact measure-preserving flows, Advances in Math.15 (1975), 175–193.
3. 3.
D. A. Lind,The isomorphism theorem for multidimensional Bernoulli flows, preprint.Google Scholar
4. 4.
D. S. Ornstein,Bernoulli shifts with the same entropy are isomorphic, Advances in Math.4 (1970), 337–352.
5. 5.
D. S. Ornstein,The isomorphism theorem for Bernoulli flows, Advances in Math.10 (1973), 124–142.
6. 6.
D. S. Ornstein,Ergodic Theory, Randomness, and Dynamical Systems, Yale Univ. Press, New Haven, 1974.
7. 7.
A. Rothstein, unpublished notes, Stanford University.Google Scholar
8. 8.
P. Shields and J.-P. Thouvenot, Entropy zero × Bernoulli processes are closed in the {ie216-1}, Ann. Probability3 (1975), 732–736.
9. 9.
J. P. Thouvenot,Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schème de Bernoulli, Israel J. Math.21 (1975), 177–203.
10. 10.
J.-P. Thouvenot,Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie, Israel J. Math.21 (1975), 208–214.
11. 11.
N. Wiener,The ergodic theorem, Duke Math. J.5 (1939), 1–18.