Israel Journal of Mathematics

, Volume 93, Issue 1, pp 333–344 | Cite as

On the distortion required for embedding finite metric spaces into normed spaces

  • Jiří MatoušekEmail author


We investigate the minimum dimensionk such that anyn-point metric spaceM can beD-embedded into somek-dimensional normed spaceX (possibly depending onM), that is, there exists a mappingf: M→X with
$$\frac{1}{D}dist_M (x,y) \leqslant \left| {f(x) - f(y)} \right| \leqslant dist_M (x,y) for any$$
Extending a technique of Arias-de-Reyna and Rodríguez-Piazza, we prove that, for any fixedD≥1,k≥c(D)n 1/2D for somec(D)>0. For aD-embedding of alln-point metric spaces into the samek-dimensional normed spaceX we find an upper boundk≤12Dn 1/[(D+1)/2]lnn (using thel k space forX), and a lower bound showing that the exponent ofn cannot be decreased at least forD∃[1,7)∪[9,11), thus the exponent is in fact a jumping function of the (continuously varied) parameterD.


Normed Space Complete Bipartite Graph Real Algebraic Variety Finite Projective Plane Ramanujan Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AFR85] N. Alon, P. Frankl and V. Rödl,Geometrical realization of set systems and probabilistic communication complexity, Proc. 26th IEEE Symposium on Foundations of Computer Science, 1985, pp. 277–280.Google Scholar
  2. [AR92] J. Arias-de-Reyna and L. Rodríguez-Piazza,Finite metric spaces needing high dimension for Lipschitz embeddings in Banach spaces, Israel Journal of Mathematics79 (1992), 103–113.zbMATHMathSciNetGoogle Scholar
  3. [Ben66] C. T. Benson,Minimal regular graphs of girth eight and twelve, Canadian Journal of Mathematics18 (1966), 1091–1094.zbMATHMathSciNetGoogle Scholar
  4. [Big74] N. Biggs,Algebraic Graph Theory, Cambridge University Press, 1974.Google Scholar
  5. [Bol78] B. Bollobás,Extremal Graph Theory, Academic Press, London, 1978.zbMATHGoogle Scholar
  6. [Bou85] J. Bourgain,On Lipschitz embedding of finite metric spaces in Hilbert space, Israel Journal of Mathematics52 (1985), 46–52.zbMATHMathSciNetGoogle Scholar
  7. [Bou86] J. Bourgain,The metrical interpretation of superreflexivity in Banach spaces, Israel Journal of Mathematics56 (1986), 222–230.zbMATHMathSciNetGoogle Scholar
  8. [BMW86] J. Bourgain, V. Milman and H. Wolfson,On type of metric spaces, Transactions of the American Mathematical Society294 (1986), 295–317.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [Gru67] B. Grünbaum,Convex Polytopes, John Wiley & Sons, London, 1967.zbMATHGoogle Scholar
  10. [JL84] W. Johnson and J. Lindenstrauss,Extensions of Lipschitz maps into a Hilbert space, Contemporary Mathematics26 (Conference in Modern Analysis and Probability), American Mathematical Society, 1984, pp. 189–206.zbMATHMathSciNetGoogle Scholar
  11. [JLS87] W. Johnson, J. Lindenstrauss and G. Schechtman,On Lipschitz embedding of finite metric spaces in low dimensional normed spaces, inGeometrical Aspects of Functional Analysis (J. Lindenstrauss and V. D. Milman, eds.), Lecture Notes in Mathematics1267, Springer-Verlag, Berlin-Heidelberg, 1987.CrossRefGoogle Scholar
  12. [LLR94] N. Linial, E. London and Yu. Rabinovich,The geometry of graphs and some of its algorithmic applications, Proceedings of the 35th IEEE Symposium on Foundations of Computer Science (1994), pp. 577–591. Journal version: Combinatorica15 (1995), 215–245.Google Scholar
  13. [LPS88] A. Lubotzky, R. Phillips and P. Sarnak,Ramanujan graphs, Combinatorica8 (1988), 261–277.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Ma90] J. Matoušek,Bi-Lipschitz embeddings into low-dimensional Euclidean spaces, Commentationes Mathematicae Universitatis Carolinae31 (1990), 589–600.MathSciNetGoogle Scholar
  15. [Ma91] J. Matoušek,Note on bi-Lipschitz embeddings into normed spaces, Commentationes Mathematicae Universitatis Carolinae33 (1992), 51–55.MathSciNetGoogle Scholar
  16. [Mil64] J. Milnor,On the betti numbers of real algebraic varieties, Proceedings of the American Mathematical Society15 (1964), 275–280.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [Tho65] R. Thom,Sur l’homologie des variétés algébriques reélles, inDifferential and Combinatorial Topology (S. S. Cairns, ed.), Princeton Univ. Press, 1965.Google Scholar

Copyright information

© The magnes press 1996

Authors and Affiliations

  1. 1.Department of Applied MathematicsCharles UniversityPraha 1Czech Republic

Personalised recommendations