Israel Journal of Mathematics

, Volume 93, Issue 1, pp 171–183

A characterization of strong measure zero sets



We show that a setXυR has strong measure zero iff for every closed measure zero setFυR,F+X has measure zero.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AR]
    A. Andryszcak and I. Recław,A note on strong measure zero sets, Acta Universitatis Carolinae34 (1993), 7–9.Google Scholar
  2. [B]
    T. Bartoszyński,On covering the real line with null sets, Pacific Journal of Mathematics131 (1988), 1–12.MathSciNetGoogle Scholar
  3. [BSh]
    T. Bartoszyński and S. Shelah,Closed measure zero sets, Annals of Pure and Applied Logic58 (1992), 93–110.CrossRefMathSciNetGoogle Scholar
  4. [Bo]
    E. Borel,Sur la classification des ensembles de mesure nulle, Bulletin de la Société Mathématique de France47 (1919), 97–125.MathSciNetGoogle Scholar
  5. [Ca]
    T. Carlson,Strong measure zero sets and strongly meager sets, Proceedings of the American Mathematical Society118 (1993), 577–586.MATHCrossRefMathSciNetGoogle Scholar
  6. [CP]
    J. Cichoń and J. Pawlikowski,On ideals of subsets of the plane and on Cohen reals, Journal of Symbolic Logic51 (1986), 560–569.CrossRefMathSciNetGoogle Scholar
  7. [G]
    F. Galvin,Strong measure zero sets, handwritten notesGoogle Scholar
  8. [GMS]
    F. Galvin, J. Mycielski and R. M. Solovay,Strong measure zero sets, Notices of the American Mathematical Society26 (1979), A-280.Google Scholar
  9. [Mi]
    A. W. Miller,Special subsets of the real line, inHandbook of Set-theoretical Topology (K. Kunen and J.E. Vaughan, eds.), Elsevier Science Publishers B. V., Amsterdam, 1984.Google Scholar
  10. [P]
    J. Pawlikowski,Property C", strongly meager sets and subsets of the plane, preprint.Google Scholar
  11. [Sh]
    S. Shelah,Every null-additive set is meager-additive, Israel Journal of Mathematics89 (1995), 357–376.MATHMathSciNetGoogle Scholar

Copyright information

© The magnes press 1996

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WrocławWrocławPoland

Personalised recommendations