Israel Journal of Mathematics

, Volume 44, Issue 3, pp 221–242 | Cite as

Martin boundaries of random walks on Fuchsian groups

  • Caroline Series


Let Γ be a finitely generated non-elementary Fuchsian group, and let μ be a probability measure with finite support on Γ such that supp μ generates Γ as a semigroup. If Γ contains no parabolic elements we show that for all but a small number of co-compact Γ, the Martin boundaryM of the random walk on Γ with distribution μ can be identified with the limit set Λ of Γ. If Γ has cusps, we prove that Γ can be deformed into a group Γ', abstractly isomorphic to Γ, such thatM can be identified with Λ', the limit set of Γ'. Our method uses the identification of Λ with a certain set of infinite reduced words in the generators of Γ described in [15]. The harmonic measure ν (ν is the hitting distribution of random paths in Γ on Λ) is a Gibbs measure on this space of infinite words, and the Poisson boundary of Γ, μ can be identified with Λ, ν.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Birkhoff,Extensions of Jentzsch's theorem, Trans. Am. Math. Soc.85 (1957), 219–227.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Bowen,Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer Lecture Notes470 (1975).Google Scholar
  3. 3.
    Y. Derriennic,Marche aléatoire sur le groupe libre et frontière de Martin, Z. Wahrscheinlichkeitstheor. Verw. Geb.32 (1975), 261–276.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Y. Derriennic and Y. Guivarc'h,Théorème de renouvellement pour les groupes nonmoyennables, C.R. Acad. Sci. Paris277 (1973), 613–615.MATHMathSciNetGoogle Scholar
  5. 5.
    E. B. Dynkin and M. B. Malyutov,Random walks on groups with a finite number of generators, Sov. Math. Dokl.2 (1961), 399–402.MATHGoogle Scholar
  6. 6.
    E. B. Dynkin and A. A. Yushkevich,Markov Processes: Theorems and Problems, New York, Plenum Press, 1969.Google Scholar
  7. 7.
    W. Floyd,Group completions and limit sets of Kleinian groups, Invent. Math.57 (1980), 205–218.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    L. R. Ford,Automorphic Functions, McGraw-Hill, New York, 1929.MATHGoogle Scholar
  9. 9.
    H. Furstenberg,Non-commuting random products, Trans. Am. Math. Soc.108 (1963), 377–428.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    H. Furstenberg,Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, Vol. 1, Dekker, New York, 1971, pp. 1–63.Google Scholar
  11. 11.
    J. Kemeny, J. Snell and A. Knapp,Denumerable Markov Chains, Van Nostrand, Amsterdam, 1966.MATHGoogle Scholar
  12. 12.
    B. Maskit,On Poincare's theorem for fundamental polygons, Adv. Math.7 (1971), 219–230.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    D. Ruelle,Characteristic exponents and invariant manifolds in Hilbert space, I.H.E.S., preprint, 1980.Google Scholar
  14. 14.
    E. Seneta,Non-Negative Matrices, Allen and Unwin, London, 1973.MATHGoogle Scholar
  15. 15.
    C. Series,The infinite word problem and limit sets in Fuchsian groups, J. Ergodic Theory and Dynamical Systems1 (1981), 337–360.MATHMathSciNetGoogle Scholar
  16. 16.
    V. Titulabin,On limit theorems for the products of random matrices, Theory Probab. and its Appl.10 (1965), 15–27.CrossRefGoogle Scholar

Copyright information

© Hebrew University 1983

Authors and Affiliations

  • Caroline Series
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations