Advertisement

Molecular Biotechnology

, Volume 9, Issue 2, pp 141–154 | Cite as

Fast atom bombardment mass spectrometric characterization of peptides

  • P. R. Das
  • B. N. Pramanik
Protocol

Abstract

Structural characterization of peptides in the range of 500–5000 Da, using fast atom bombardment (FAB) and Cs+ ion liquid secondary ion mass spectrometry (SIMS), is reviewed. These include syntheitc peptides Kemptamide (mol wt 1516); GIF-C15 (mol wt 1875), an isolated natural product as an acylated pentapeptide; and polypeptides generated from enzymatic digests of proteins. MS data is shown to reveal molecular weight and sequence information as well as determine disulfide bonds between cysteine residues and glycosylation sites in the case of a glycopeptide. The complementarity of MS technique to classical biochemical methods for peptide characterization is highlighted. The reader is briefly acquainted with two newer ionization techniques namely, electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). Synthetic chemists and biochemists can refer to the in-depth review articles that are cited throughout this article.

Index Entries

Fast atom bombardment (FAB) secondary ion mass spectrometry (SIMS) mass spectrometry (MS) electropray ionization (ESI) matrix-assisted laser desorption ionization (MALDI) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morris, H. R., Williams, D. H., and Ambler, R. P. (1971) Determination of the sequences of proteinderived peptides and peptide mixtures by mass spectrometry.Biochem. J. 125, 189–201.PubMedGoogle Scholar
  2. 2.
    Rose, K., Priddle, J. D., Offord, R. E., and Esnouf, M. P. (1980) A mass-spectrometric method for the estimation of the ratio of g-carboxyglutamic acid to glutamic acid at specific sites in proteins.Biochem. J. 187, 239–243.PubMedGoogle Scholar
  3. 3.
    Rose, K., Simona, M., and Offord, R. (1983) Amino acid sequence determination by g.l.c.-mass spectrometry of permethylated peptides.Biochem. J. 215, 261–272.PubMedGoogle Scholar
  4. 4.
    Biemann, K., Gapp, F., and Seibl, J. (1959) Application of mass spectrometry to structure problems.J. Am. Chem. Soc. 81, 2274,2275.CrossRefGoogle Scholar
  5. 5.
    Carr, S. A., Herlihy, W. C., and Biemann, K. (1981) Advances in gas chromatographic mass spectrometric protein sequencing.Biomed. Mass Spectrom. 8, 51–61.CrossRefGoogle Scholar
  6. 6.
    Khorana, H. G., Gerber, G. E., Herlihy, W. C., Gray, C. P., Anderegg, R. J., Nihei, K., and Biemann, K. (1979) Amino acid sequence of bacteriorhodopsin.Proc. Natl. Acad. Sci. USA 76, 5046–5050.PubMedCrossRefGoogle Scholar
  7. 7.
    Barber, M., Bordoli, R. S., Sedgewick, R. D., and Tyler, A. N. (1981) Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry.J. Chem. Soc. Chem. Comm. 7, 325–327.CrossRefGoogle Scholar
  8. 8.
    McFarlane, R. D. and Torgerson, T. F. (1976) Californium-252 plasma desorption mass spectroscopy.Science 191, 920–925.CrossRefGoogle Scholar
  9. 9.
    Sundqvist, B. and McFarlane, R. D. (1985)252Cf-plasma desorption mass spectrometry.Mass Spectrom. Rev. 4, 421–460.CrossRefGoogle Scholar
  10. 10.
    Whitehouse, C. M., Dreyer, R. N., Yamashita, M., and Fenn, J. B. (1985) Electrospray interface for liquid chromatography and mass spectrometers.Anal. Chem. 57, 675–679.PubMedCrossRefGoogle Scholar
  11. 11.
    Loo, J. A., Udseth, H. R., and Smith, R. D. (1988) Collisional effects on the charge distribution of ions from large molecules, formed by electrospray-ionization mass spectrometry.Rapid Comm. Mass Spectrom. 2, 207–210.CrossRefGoogle Scholar
  12. 12.
    Bruins, A. P., Covey, T. R., and Henion, J. D. (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry.Anal. Chem. 59, 2642–2646.CrossRefGoogle Scholar
  13. 13.
    von Wyssnhoff, H., Selzle, H. L., and Schlag, E. W. (1985) Laser-desorbed large molecules in a supersonic jet.Z. Naturforsch. 40a, 674–676.Google Scholar
  14. 14.
    Li, L. and Lubman, D. (1989) Resonant two-photon ionization for the identification of thermal decomposition products in the laser desorption of small peptides.Rapid Comm. Mass Spectrom. 3, 12–16.CrossRefGoogle Scholar
  15. 15.
    Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 Daltons.Anal. Chem. 60, 2299–2301.PubMedCrossRefGoogle Scholar
  16. 16.
    Carr, S. A., Helmling, M. E., Bean, M. F., and Roberts, G. D. (1991) Integretation of mass spectrometry in analytical biotechnology.Anal. Chem. 63, 2802–2824.PubMedCrossRefGoogle Scholar
  17. 17.
    Chowdhury, S. K. and Chait, B. T. (1989) Recent developments in the mass spectrometry of peptides and proteins, inAnnual Reports in Medicinal Chemistry vol 24, Academic, San Diego, CA, pp. 253–263.Google Scholar
  18. 18.
    Barber, M. and Green, B. N. (1987) The analysis of small proteins in the molecular weight range 10–24 kDa by magnetic sector mass spectrometry.Rapid Comm. Mass Spectrom. 1, 80–83.CrossRefGoogle Scholar
  19. 19.
    Pramanik, B., Tsarbopoulos, A., Siegel, M., Tsao, R., Reichert, P., Bartner, P., Das, P., Her, G., Doelling, V., Nagabhushan, T. L., and Trotta, P. P. (1989) Californium-252 plasma desorption and cesium ion liquid secondary ion mass spectrometry studies of some natural and recombinant proteins, inProceedings of the 37th ASMS Conference on Mass Spectrometry and Allied Topics, Miami Beach, FL, pp. 893,894.Google Scholar
  20. 20.
    Tsarbopoulos, A., Pramanik, B. N., Reichert, P., Siegel, M. M., Nagabhushan, T. L., and Trotta, P. P. (1991) 252 Cf-Plasma desorption and cesium-ion liquid secondary-ion mass spectrometric analysis of recombinant proteins.Rapid Comm. Mass Spectrom. 5(2), 81–85.CrossRefGoogle Scholar
  21. 21.
    Friedman, M., Krull, L. H., and Cavins, J. F. (1970) The chromatographic determination of cystine and cysteine residues in proteins as S-β-(4-pyridylethyl) cysteine.J. Biol. Chem. 245, 3868–3871.PubMedGoogle Scholar
  22. 22.
    Andrews, P. C. and Dixon, J. E. (1987) A procedure for in situ alkylation of cystine residues on glass fiber prior to protein microsequence analysis.Anal. Biochem. 161, 524–528.PubMedCrossRefGoogle Scholar
  23. 23.
    Pramanik, B. N., Das, P. R., and Bose, A. K. (1989) Molecular ion enhancement using salts in FAB matrices for studies on complex natural products.J. Natl. Prod. 52(3), 534–546.CrossRefGoogle Scholar
  24. 24.
    Chait, B. T. (1988) The use of252Cf plasma desorption mass spectrometry for the analysis of synthetic peptides and proteins, inThe Analysis of Peptides and Proteins by Mass Spectrometry (McNeal, C. J., ed.), Wiley, New York, p. 21.Google Scholar
  25. 25.
    Biemann, K. and Scoble, H. A. (1987) Characterization by tandem mass spectrometry of structural modifications in proteins.Science 237, 992–998.PubMedCrossRefGoogle Scholar
  26. 26.
    Williams, D. H., Bojesen, G., Auffret, A. D., and Taylor, L. (1981) Study of difficult peptides from paracoccus cytochrome c-550 and a dolphin cytochrome c.FEBS Lett. 128, 37–39.PubMedCrossRefGoogle Scholar
  27. 27.
    Williams, D. H., Bradley, C. V., Santikarn, S., and Bojesen, G. (1982) Fast-atom-bombardment mass spectrometry.Biochem. J. 201, 105–117.PubMedGoogle Scholar
  28. 28.
    Pramanik, B. N., Schering-Plough Internal Memo, Dec. 21, 1984.Google Scholar
  29. 29.
    Roepstorff, P. and Fohlman, J. (1984) Biomedical mass spectrometry, inProposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides.11, 601.Google Scholar
  30. 30.
    Nagabhushan, T. L., Kosecki, R., Pramanik, B., Labdon, J., and Trotta, P. P. (1989) Purification and sequecing of interferons and other biologically active proteins and polypeptides, inFrontiers in Bioprocessing, (Sikdar, S. K., Bier, M., and Todd, P., eds.), CRC, Boca Raton, FL, Chapter 5, pp. 51–62.Google Scholar
  31. 31.
    McLafferty, F. W. (ed.) (1983)Tandem Mass Spectrometry, John Wiley, New York.Google Scholar
  32. 32.
    Hunt, D. F., Yates, J. R., Shabanowitz, J., Winston, S., and Hauer, C. (1986) Protein sequencing by tandem mass spectrometry.Proc. Natl. Acad. Sci. USA 83, 6233–6237.PubMedCrossRefGoogle Scholar
  33. 33.
    Biemann, K. and Martin, S. (1987) Mass spectrometric determination of the amino acid sequence of peptides and proteis.Mass Spectrom Rev. 6, 1–76.CrossRefGoogle Scholar
  34. 34.
    Gibson, B. W. and Biemann, K. (1984) Strategy for the mass spectrometric verification and correction of the primary structures of proteins deduced from their DNA sequences.Proc. Natl. Acad. Sci. USA 81, 1956–1960.PubMedCrossRefGoogle Scholar
  35. 35.
    Morris, H. R., Panico, M., and Taulor, G. W. (1983) FAB-mapping of recombinant-DNA protein products.Biochem. Biophys. Res. Commun. 117, 299–305.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsarbopoulos, A., Becker, G. W., Occolowitz, J. L., and Jardine, I. (1988) Peptide and protein mapping by 252Cf-plasma desorption mass spectrometry.Anal. Biochem. 171, 113–123.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee, T. D. and Vemuri, S. (1990) MacPro mass: a computer program to correlate mass spectral data to peptide and protein structures.Biomed. Environ. Mass Spectrom. 19, 639–645.PubMedCrossRefGoogle Scholar
  38. 38.
    Pramanik, B. N., Tsarbopoulos, A., Labdon, J. E., Trotta, P. P., and Nagabhushan, T. L. (1991) Structural analysis of biologically active peptides and recombinant proteins and their modified counterparts by mass spectrometry.J. Chromatogr. 562, 377–389.PubMedCrossRefGoogle Scholar
  39. 39.
    Dixon, J. E., Yazdanparast, R., Smith, D., and Andrews, P. C. (1987) Identification of posttranslational modifications in neuropeptides, inMethods in Protein Sequence Analysis, 1986. (Walsh, K. A., ed.), Humana, Clifton, NJ, p. 493.Google Scholar
  40. 40.
    Tsunasawa, S. and Sakiyama, F. (1984) Amino-terminal acetylation of proteins: An overview.Methods Enzymol. 106, 165–170.PubMedGoogle Scholar
  41. 41.
    Carr, S. A. and Biemann, K. (1984) Identification of posttranslationally modified amino acids in proteins by mass spectrometry.Methods Enzymol. 106, 29–58.PubMedCrossRefGoogle Scholar
  42. 42.
    Carr, S. A., Bean, M. F., Helmling, M. E., and Roberts, G. D. (1990) Integration of mass spectrometry in biopharmaceutical research, inBiological Mass Spectrometry (Burlingame, A. L. and McCloskey, J. A., eds.), Elsevier, Amsterdam, p. 621.Google Scholar
  43. 43.
    Geiger, T. and Clarke, S. (1987) Deamidation, isomerization and racemization at asparaginyl and aspartyl residues in peptides.J. Biol. Chem. 262, 785–794.PubMedGoogle Scholar
  44. 44.
    Gibson, B. W. (1990) The identification and sequece analysis of phosphorylated and sulfated peptides by liquid secondary ion mass spectrometry, inBiological Mass Spectrometry (Burlingame, A. L. and McCloskey, J. A., eds.), Elsevier, Amsterdam, p. 315.Google Scholar
  45. 45.
    Bateman, A., Solomon, S., and Bennett, H. P. J. (1990) Post-translational modification of bovine pro-opiomelanocortin.J. Biol. Chem. 265, 130–136.Google Scholar
  46. 46.
    Morris, H. R. and Pucci, P. (1985) A new method for rapid assignment of S-S bridges in proteins.Biochem. Biophys. Res. Commun. 126, 1122–1128.PubMedCrossRefGoogle Scholar
  47. 47.
    Lydon, N. B., Favre, C., Bove, S., Neyret, O., Benureau, S., Levine, A. M., Seelig, G. F., Nagabhushan, T. L., and Trotta, P. P. (1985) Immunochemical mapping of α-2 interferon.Biochemistry 24, 4131–4141.PubMedCrossRefGoogle Scholar
  48. 48.
    Her, G. R., Pramanik, B. N., Kumarasamy, R., Bartner, P., Das, P., Tindall, S. H., Nagabhushan, T. L., Trotta, P. P., and Tsarbopoulos, A. (1990) Structural characterization of the recombinant human interleukin-4 N-linked carbohydrate chains by mass spectrometry, inProceedings of the 38th ASMS Conference on Mass Spectrometry and Allied Topics, Tucson, AZ., pp. 1341,1342.Google Scholar
  49. 49.
    Carr, S. A. and Roberts, G. D. (1986) Carbohydrate mapping by mass spectrometry: a novel method for identifying attachment sites of Asn-linked sugars in glycoproteins.Anal. Biochem. 157, 396–406.PubMedCrossRefGoogle Scholar
  50. 50.
    Tsarbopoulolus, A., Pramanik, B. N., Nagabhushan, T. L., and Covey, T. R. (1995) Structural analysis of the CHO-derived Interleukin-4 by liquid chromatography/electrospray ionization mass spectometry.J. Mass Spectometry 30, 1752–1763.CrossRefGoogle Scholar
  51. 51.
    Ganem, B., Li, Y. T., and Henion, J. D. (1991) Detection of non-covalent receptor-ligand complexes by mass spectrometry.J. Am. Chem. Soc. 113, 6294–6296.CrossRefGoogle Scholar
  52. 52.
    Ganem, B., Li, Y. T., and Henion, J. D. (1991) Observation of non-covalent enzyme-substrate and enzyme-product complexes by ion-spray mass spectrometry.J. Am. Chem. Soc. 113, 7818–7819.CrossRefGoogle Scholar
  53. 53.
    Baca, M. and Kent, S. B. H. (1992) Direct observation of a ternary complex between the dimeric enzyme HIV-1 protease and a substrate-based inhibitor.J. Am. Chem. Soc. 114, 3992–3993.CrossRefGoogle Scholar
  54. 54.
    Ganguly, A. K., Pramanik, B. N., Tsarbopoulos, A., Covey, T. R., Huang, E. C., and Fuhrman, S. A. (1992) Mass-spectrometric detection of the noncovalent GDP-bound conformational state of the human H-ras protein.J. Am. Chem. Soc. 114, 6559–6560.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  1. 1.Schering-Plough Research InstituteKenilworth

Personalised recommendations